Copper oxide nanoparticles(CuO NPs)were synthesised with laser ablation of a copper sheet immersed in deionized water(DW),cetrimonium bromide(CTAB),and sodium dodecyl sulphate(SDS),respectively.The target was irradiat...Copper oxide nanoparticles(CuO NPs)were synthesised with laser ablation of a copper sheet immersed in deionized water(DW),cetrimonium bromide(CTAB),and sodium dodecyl sulphate(SDS),respectively.The target was irradiated with a pulsed Nd:YAG laser at 1064 nm,600 mJ,a pulse duration of 10 ns,and a repetition rate of 5 Hz.The CuO NPs colloidal were analyzed using UV–Vis spectroscopy,the Fourier transform infrared(FTIR)spectrometer,zeta potential(ZP),X-ray diffraction(XRD),transmission electron microscope(TEM)and field emission scanning electron microscopy(FESEM).The absorption spectra of CuO NPs colloidal showed peaks at 214,215 and 220 nm and low-intensity peaks at 645,650 and 680 nm for SDS,CTAB and DW,respectively.CuO NPs’colloidal results are(−21.6,1.2,and 80 mV)for negatively,neutrally,and positively charged SDS,DW,and CTAB,respectively.The XRD pattern of the NPs revealed the presence of CuO phase planes(110)(111),(20-2)and(11-1).The TEM images revealed nearly spherical NPs,with sizes ranging from 10–90,10–50,and 10–210 nm for CuO NPs mixed with DW,SDS and CTAB,respectively.FESEM images of all the synthesized samples illustrate the formation of spherical nanostructure and large particles are observable.The CuO NPs were tested for antibacterial activity against Streptococcus mutans by using the well diffusion method.In this method,CuO NPs prepared in DW at a concentration of 200μg/mL showed a greater inhibition zone against Streptococcus mutans.展开更多
The enhancement of the physicochemical characteristics of fossil fuel has been the subject of extensive research to achieve better efficiency and reduced emissions. Diesel is one of the fossil fuels that are highly co...The enhancement of the physicochemical characteristics of fossil fuel has been the subject of extensive research to achieve better efficiency and reduced emissions. Diesel is one of the fossil fuels that are highly consumed in daily life. This paper focuses on the behavior of a refined diesel fuel when copper oxide nanoparticles are added. The resulting blend ofnano-diesel has been analyzed using a four-stroke engine under two loads indicating light vehicles and heavy duty vehicles. The nano-diesel was prepared by the aid of an ultrasonicator and a mechanical homogenizer. A base diesel was taken as a reference to distinguish the effect of the nanoparticles additives. Three different samples with different concentrations are utilized in this study. As a result, the fuel consumption, exhaust temperature, brake power, power losses and engine efficiency have been evaluated and compared to the base diesel in order to demonstrate and access the enhanced performance of the nano-fuel blend. The three concentrations conducted were 100 ppm, 200 ppm and 300 ppm of copper oxide nanoparticles. The results represented that the pure refinery diesel has low exhaust temperatures, high brake power and high efficiency as compared to the commercial diesel supplied from a gas station. In addition, 300 ppm copper oxide nano-diesel showed improvement in engine performances as compared to the other concentrations and pure diesel. In this context, lowest fuel consumption for both passenger cars and heavy duty vehicles was achieved, brake power for passenger cars only was improved and input power showed improvement however, exhaust temperature was the highest as for this fuel.展开更多
In the selective oxidation of biomass-based 1,2-propanediol(PDO)with oxygen as the terminal oxidant,it is challenging to improve the lactic acid(LA)selectivity for nonnoble metal nanoparticles(NPs)due to their limited...In the selective oxidation of biomass-based 1,2-propanediol(PDO)with oxygen as the terminal oxidant,it is challenging to improve the lactic acid(LA)selectivity for nonnoble metal nanoparticles(NPs)due to their limited oxygen reduction rate and easy C-C cleavage.Given the high economic feasibility of nonnoble metals,i.e.,Cu,in this work,copper and nitrogen codoped porous carbon nanosheets encapsulating ultrafine Cu nanoparticles(Cu@Cu-N-C)were developed to realize highly selective of PDO oxidation to LA.The carbon-encapsulated ultrasmall Cu^(0)NPs in Cu@Cu-N-C have high PDO dehydrogenation activity while N-coordinated Cu(Cu-N)sites are responsible for the high oxygen reduction efficacy.Therefore,the performance of catalytic PDO conversion to LA is optimized by a proposed pathway of PDO→hydroxylacetone→lactaldehyde→LA.Specifically,the enhanced LA selectivity is 88.5%,and the PDO conversion is up to 75.1%in an O_(2)-pressurized reaction system(1.0 MPa O_(2)),superior to other Cu-based catalysts,while in a milder nonpressurized system(O_(2)flow rate of 100 mL min-1),a remarkable LA selectivity(94.2%)is obtained with 39.8%PDO conversion,2.2 times higher than that of supported Au nanoparticles(1%Au/C).Moreover,carbon encapsulation offers Cu@Cu-N-C with strong leaching resistance for better recycling.展开更多
The synthesis and catalytic properties of copper nanoparticles(Cunps) were reported using L-ascorbic acid as reducing and capping agent in aqueous medium. The effect of different concentrations of L-ascorbic acid on...The synthesis and catalytic properties of copper nanoparticles(Cunps) were reported using L-ascorbic acid as reducing and capping agent in aqueous medium. The effect of different concentrations of L-ascorbic acid on the particle size of Cunps was investigated. The synthesized Cunps were characterized by UV-Visible spectrophotometer, scanning electron microscopy(SEM), transmission electron microscopy(TEM) and Fourier transform infrared(FTIR) spectrophotometer. The result indicates that the size of copper nanoparticles decreases with the increase in concentration of L-ascorbic acid. L-Ascorbic acid plays an important role to protect the copper nanoparticles from oxidation and agglomeration which helps nanoparticles to get better stability for the application. The synthesized Cunps show excellent catalytic activity in the oxidation of serine(Ser) by peroxomonosulphate(PMS). The catalytic activity of Cunps increases with the decrease in size of Cunps. The Cunps are expected to be suitable alternative and play an imperative role in the fields of catalysis and environmental remediation.展开更多
The mechanical and tribological properties of Cu-based powder metallurgy (P/M) friction composites containing 10wt%-50wt% oxide-dispersion-strengthened (ODS) Cu reinforced with nano-Al2O3 were investigated. Additi...The mechanical and tribological properties of Cu-based powder metallurgy (P/M) friction composites containing 10wt%-50wt% oxide-dispersion-strengthened (ODS) Cu reinforced with nano-Al2O3 were investigated. Additionally, the friction and wear behaviors as well as the wear mechanism of the Cu-based composites were characterized by scanning electron microscopy (SEM) in conjunction with energy-dispersive X-ray spectroscopy (EDS) elemental mapping. The results indicated that the Cu-based friction composite containing 30wt% ODS Cu exhibited the highest hardness and shear strength. The average and instantaneous friction coefficient curves of this sample, when operated in a high-speed train at a speed of 300 km/h, were similar to those of a commercial disc brake pad produced by Knorr-Bremse AG (Germany). Additionally, the lowest linear wear loss of the obtained samples was (0.008 ± 0.001) mm per time per face, which is much lower than that of the Knorr-Bremse pad ((0.01 ± 0.001) mm). The excellent performance of the developed pad is a consequence of the formation of a dense oxide composite layer and its close combination with the pad body.展开更多
Copper oxide nanowires and nanoparticles were fabricated through electrospinning followed by calcinations in different heating conditions.It was found that the solution viscosity and environment humidity had great imp...Copper oxide nanowires and nanoparticles were fabricated through electrospinning followed by calcinations in different heating conditions.It was found that the solution viscosity and environment humidity had great impact on the morphologies of precursor nanowires,and the parameters of heat treatment,including final temperature and heating rate,significantly affected the product morphologies.展开更多
Flavonoid-based nanomaterials have extensive potential in antimicrobial research because of their non-toxicity,large-scale producibility,and chemical stability.An efficient combination of flavonoids and rare earth met...Flavonoid-based nanomaterials have extensive potential in antimicrobial research because of their non-toxicity,large-scale producibility,and chemical stability.An efficient combination of flavonoids and rare earth metals can have excellent antimicrobial properties owing to their robust medicinal and physicochemical properties.In this study,we synthesized copper oxide(CuO)nanoparticles(NPs)using a reflux reaction and repeated doping with the rare earth element lanthanum to prepare La-CuO NPs.Next,these La-CuO NPs were functionalized with the flavonoid curcumin,and the modified NPs were termed Cu-La-CuO NPs.These NPs were chemically characterized via microscopic and spectroscopic techniques,including transmission electron microscopy(TEM),scanning electron microscopy(SEM),ultraviolet-visible(UV-Vis)adsorption,Fourier transform infrared spectroscopy(FT-IR)spectroscopy,and powder X-ray diffraction(XRD)analysis.The SEM-EDX analysis reveals the elements doped into the native CuO NPs.The TEM and XRD characterization results show,in detail,the distinct morphology and phase composition of the prepared CuO,La-CuO,and Cu-La-CuO NPs.The antimicrobial activity of the Cu-La-CuO NPs was investigated on bacteria,such as Escherichia coli(E.coli)and Bacillus subtilis(B.subtilis),and fungi,including Aspergillus niger(A niger).The Cu-La-CuO NPs delivers excellent antimicrobial effects due to the incorporation of lanthanum and curcumin into the CuO NPs.The Cu-La-CuO NPs show excellent antimicrobial potentials with an adequate zone of inhibition values around 2.2 and 2.9 mm in E.coli and A.niger,respectively.Live and dead analysis studies suggest the antimicrobial effects of lanthanum and curcumin moieties over native CuO NPs.The obtained results are significant in developing of rare earth metal-based flavo no id-conjugated nanocomposites against typical microbes.展开更多
Copper nanoparticles-decorated polyaniline- derived mesoporous carbon that can serve as noble metal-free electrocatalyst for the hydrazine oxidation reaction (HzOR) is synthesized via a facile synthetic route. The m...Copper nanoparticles-decorated polyaniline- derived mesoporous carbon that can serve as noble metal-free electrocatalyst for the hydrazine oxidation reaction (HzOR) is synthesized via a facile synthetic route. The material exhibits excellent electrocatalytic activity toward HzOR with low overpotential and high current density. The material also remains stable during the electrocatalytic reaction for long time. Its good electro- catalytic performance makes this material a promising alternative to conventional noble metal-based catalysts (e.g., Pt) that are commonly used in HzOR-based fuel cells.展开更多
The combination of relatively low-cost ionic liquids, simple copper salt, and terminal oxidant tert-butyl hydroperoxide provided an efficient and environmentally friendly approach to the preparation of ionone-like die...The combination of relatively low-cost ionic liquids, simple copper salt, and terminal oxidant tert-butyl hydroperoxide provided an efficient and environmentally friendly approach to the preparation of ionone-like dienones. Six pyridinium ionic liquids were evaluated in allylic oxidation of α-ionone and β-ionone. The 60%-70% yields of 3-oxo-α-ionone were obtained with 0.02 0.20 mmol of CuCl2·2H2O as catalyst, 3-5 mmol of tert-butyl hydroperoxide as oxidant and 1 g of [Bpy]PF6 as solvent for 4-20 h at 60℃. The facile recovery and recycle of catalyst were also achieved. More significantly, peculiar phase behaviors of [Bpy]PF6 and [Epy]PF6 offered the catalytic system advantages of homogeneous reaction and heterogeneous separation. Scanning electron microscope (SEM) images of [Bpy]PF6 provided evidences for the behaviors. Transmission electron microscope (TEM) micrographs showed copper salt nanoparticles catalyst formed and stabilized in pyridinium ionic liquids.展开更多
The selective oxidation of methane under mild conditions remains the“Holy Grail of Catalysis”.The key to activating methane and inhibiting over-oxidation of target oxygenates lies in designing active centers.Copper ...The selective oxidation of methane under mild conditions remains the“Holy Grail of Catalysis”.The key to activating methane and inhibiting over-oxidation of target oxygenates lies in designing active centers.Copper nanoparticles were loaded onto TiO_(2) nanofibers using the photo-deposition method.The resulting catalysts were found to effectively convert methane into C1 oxygenated products under mild conditions.Compared with previously reported catalysts,it delivers a superior performance of up to 2510.7 mmol·g_(Cu)^(-1)·h^(-1) productivity with a selectivity of around 100%at 80℃for 5 min.Microstructure characterizations and density functional theory(DFT)calculations indicate that TiO_(2) in the mixed phase of anatase and rutile significantly increases the Cu^(+)/CuO ratio of the supported Cu species,and this ratio is linearly related to the formation rate of oxygen-containing species.The CuI site promotes the generation of active O species from H_(2)O_(2) dissociation on Cu_(2)O(111).These active O species reduce the energy barrier for breaking the C-H bond of CH_(4),thus boosting the catalytic activity.The methane conversion mechanism was proposed as a methyl radical pathway to form CH_(3)OH and CH_(3)OOH,and then the generated CH_(3)OH is further oxidized to HOCH_(2)OOH.展开更多
The multiwalled carbon nanotubes thin-film-based electrode was fabricated by electrophoretic deposition and modified with copper (Cu) nanoparticles to fabricate Cu/CNTs nanocomposite sensor for nonenzymatic glucose ...The multiwalled carbon nanotubes thin-film-based electrode was fabricated by electrophoretic deposition and modified with copper (Cu) nanoparticles to fabricate Cu/CNTs nanocomposite sensor for nonenzymatic glucose detection. The expensive glassy carbon electrode was replaced by fluorine-doped tin oxide glass containing CNTs film to confine the Cu nanoparticles growth by electrodeposition through cyclic voltammetry (CV). The ultraviolet visible and X-ray diffraction analysis revealed the successful deposition of Cu nanoparticles on the CNTs-modified electrode. The atomic force microscopy images confirrqed the morphology of electrodeposited Cu on CNTs film as uniformly dispersed particles. The electrocatalytic activity of electrode to the glucose oxidation was investigated in alkaline medium by CV and amperometric measurements. The fabricated sensor exhibited a fast response time of less than 5 s and the sensitivity of 314 μA rnM^-1 cm^-2 with linear concentration range (0.02-3.0 mM) having detection limit 10.0 μM. Due to simple preparation of sensor, Cu/CNTs nanocomposite electrodes are a suitable candidate for reliable determination of glucose with good stability.展开更多
Nanoparticles(NPs)are widely used for their special physical properties and released into the natural environment.When two types of NPs exist in the same environment,the presence of one type of NP may affect the prope...Nanoparticles(NPs)are widely used for their special physical properties and released into the natural environment.When two types of NPs exist in the same environment,the presence of one type of NP may affect the properties of the other type of NP.This study investigated the toxic effects of multi-walled carbon nanotubes(MWCNTs)and copper oxide nanoparticles(Cu O NPs)on Tetradesmus obliquus.Both NPs had toxic effects on algae,and the toxic effects of MWCNTs were significantly stronger than Cu O NPs which the 96-hr median effective concentration to algae were 33.8 and 169.2 mg/L,respectively.Oxidative stress and cell membrane damage were the main reasons for the toxicity of NPs to algae,and they were concentration-dependent,and the existence of Cu O NPs in some groups reduced cell membrane damage caused by MWCNTs which may because that Cu O NPs formed heteroaggregation with MWCNTs,reducing the contact of nanoparticles with cell membranes,then reducing physical damage.Scanning electron microscopy(SEM)and transmission electron microscope(TEM)results indicated cell damage,the heteroaggregation of MWCNTs-Cu O NPs and obvious nanoparticles internalization.In some groups,the presence of Cu O NPs significantly reduced reactive oxygen species(ROS)level induced by MWCNTs.However,for the highest concentration group,the ROS level was much higher than that of the two NPs alone treatment groups,which might be related to the high concentration of MWCNTs promoting the internalization of Cu O NPs.MWCNTs and Cu O NPs affected and interacted with each other,causing more complex toxic effects on aquatic organisms.展开更多
文摘Copper oxide nanoparticles(CuO NPs)were synthesised with laser ablation of a copper sheet immersed in deionized water(DW),cetrimonium bromide(CTAB),and sodium dodecyl sulphate(SDS),respectively.The target was irradiated with a pulsed Nd:YAG laser at 1064 nm,600 mJ,a pulse duration of 10 ns,and a repetition rate of 5 Hz.The CuO NPs colloidal were analyzed using UV–Vis spectroscopy,the Fourier transform infrared(FTIR)spectrometer,zeta potential(ZP),X-ray diffraction(XRD),transmission electron microscope(TEM)and field emission scanning electron microscopy(FESEM).The absorption spectra of CuO NPs colloidal showed peaks at 214,215 and 220 nm and low-intensity peaks at 645,650 and 680 nm for SDS,CTAB and DW,respectively.CuO NPs’colloidal results are(−21.6,1.2,and 80 mV)for negatively,neutrally,and positively charged SDS,DW,and CTAB,respectively.The XRD pattern of the NPs revealed the presence of CuO phase planes(110)(111),(20-2)and(11-1).The TEM images revealed nearly spherical NPs,with sizes ranging from 10–90,10–50,and 10–210 nm for CuO NPs mixed with DW,SDS and CTAB,respectively.FESEM images of all the synthesized samples illustrate the formation of spherical nanostructure and large particles are observable.The CuO NPs were tested for antibacterial activity against Streptococcus mutans by using the well diffusion method.In this method,CuO NPs prepared in DW at a concentration of 200μg/mL showed a greater inhibition zone against Streptococcus mutans.
文摘The enhancement of the physicochemical characteristics of fossil fuel has been the subject of extensive research to achieve better efficiency and reduced emissions. Diesel is one of the fossil fuels that are highly consumed in daily life. This paper focuses on the behavior of a refined diesel fuel when copper oxide nanoparticles are added. The resulting blend ofnano-diesel has been analyzed using a four-stroke engine under two loads indicating light vehicles and heavy duty vehicles. The nano-diesel was prepared by the aid of an ultrasonicator and a mechanical homogenizer. A base diesel was taken as a reference to distinguish the effect of the nanoparticles additives. Three different samples with different concentrations are utilized in this study. As a result, the fuel consumption, exhaust temperature, brake power, power losses and engine efficiency have been evaluated and compared to the base diesel in order to demonstrate and access the enhanced performance of the nano-fuel blend. The three concentrations conducted were 100 ppm, 200 ppm and 300 ppm of copper oxide nanoparticles. The results represented that the pure refinery diesel has low exhaust temperatures, high brake power and high efficiency as compared to the commercial diesel supplied from a gas station. In addition, 300 ppm copper oxide nano-diesel showed improvement in engine performances as compared to the other concentrations and pure diesel. In this context, lowest fuel consumption for both passenger cars and heavy duty vehicles was achieved, brake power for passenger cars only was improved and input power showed improvement however, exhaust temperature was the highest as for this fuel.
基金supported by the National Natural Science Foundation of China(32371407,82160421)the Natural Science Foundation of Jiangsu Province(BK20211322)。
文摘In the selective oxidation of biomass-based 1,2-propanediol(PDO)with oxygen as the terminal oxidant,it is challenging to improve the lactic acid(LA)selectivity for nonnoble metal nanoparticles(NPs)due to their limited oxygen reduction rate and easy C-C cleavage.Given the high economic feasibility of nonnoble metals,i.e.,Cu,in this work,copper and nitrogen codoped porous carbon nanosheets encapsulating ultrafine Cu nanoparticles(Cu@Cu-N-C)were developed to realize highly selective of PDO oxidation to LA.The carbon-encapsulated ultrasmall Cu^(0)NPs in Cu@Cu-N-C have high PDO dehydrogenation activity while N-coordinated Cu(Cu-N)sites are responsible for the high oxygen reduction efficacy.Therefore,the performance of catalytic PDO conversion to LA is optimized by a proposed pathway of PDO→hydroxylacetone→lactaldehyde→LA.Specifically,the enhanced LA selectivity is 88.5%,and the PDO conversion is up to 75.1%in an O_(2)-pressurized reaction system(1.0 MPa O_(2)),superior to other Cu-based catalysts,while in a milder nonpressurized system(O_(2)flow rate of 100 mL min-1),a remarkable LA selectivity(94.2%)is obtained with 39.8%PDO conversion,2.2 times higher than that of supported Au nanoparticles(1%Au/C).Moreover,carbon encapsulation offers Cu@Cu-N-C with strong leaching resistance for better recycling.
文摘The synthesis and catalytic properties of copper nanoparticles(Cunps) were reported using L-ascorbic acid as reducing and capping agent in aqueous medium. The effect of different concentrations of L-ascorbic acid on the particle size of Cunps was investigated. The synthesized Cunps were characterized by UV-Visible spectrophotometer, scanning electron microscopy(SEM), transmission electron microscopy(TEM) and Fourier transform infrared(FTIR) spectrophotometer. The result indicates that the size of copper nanoparticles decreases with the increase in concentration of L-ascorbic acid. L-Ascorbic acid plays an important role to protect the copper nanoparticles from oxidation and agglomeration which helps nanoparticles to get better stability for the application. The synthesized Cunps show excellent catalytic activity in the oxidation of serine(Ser) by peroxomonosulphate(PMS). The catalytic activity of Cunps increases with the decrease in size of Cunps. The Cunps are expected to be suitable alternative and play an imperative role in the fields of catalysis and environmental remediation.
基金financially supported by the National High Technology Research and Development Program of China (No. 2013AA031104)
文摘The mechanical and tribological properties of Cu-based powder metallurgy (P/M) friction composites containing 10wt%-50wt% oxide-dispersion-strengthened (ODS) Cu reinforced with nano-Al2O3 were investigated. Additionally, the friction and wear behaviors as well as the wear mechanism of the Cu-based composites were characterized by scanning electron microscopy (SEM) in conjunction with energy-dispersive X-ray spectroscopy (EDS) elemental mapping. The results indicated that the Cu-based friction composite containing 30wt% ODS Cu exhibited the highest hardness and shear strength. The average and instantaneous friction coefficient curves of this sample, when operated in a high-speed train at a speed of 300 km/h, were similar to those of a commercial disc brake pad produced by Knorr-Bremse AG (Germany). Additionally, the lowest linear wear loss of the obtained samples was (0.008 ± 0.001) mm per time per face, which is much lower than that of the Knorr-Bremse pad ((0.01 ± 0.001) mm). The excellent performance of the developed pad is a consequence of the formation of a dense oxide composite layer and its close combination with the pad body.
基金The National Natural Science Foundation of China(Grant No.51171006)The Key Research Project in Science and Technology of Leshan(Grant No.12GZD066)
文摘Copper oxide nanowires and nanoparticles were fabricated through electrospinning followed by calcinations in different heating conditions.It was found that the solution viscosity and environment humidity had great impact on the morphologies of precursor nanowires,and the parameters of heat treatment,including final temperature and heating rate,significantly affected the product morphologies.
基金the Gachon University Research Fund of 2021(GCU-2021-10360001)。
文摘Flavonoid-based nanomaterials have extensive potential in antimicrobial research because of their non-toxicity,large-scale producibility,and chemical stability.An efficient combination of flavonoids and rare earth metals can have excellent antimicrobial properties owing to their robust medicinal and physicochemical properties.In this study,we synthesized copper oxide(CuO)nanoparticles(NPs)using a reflux reaction and repeated doping with the rare earth element lanthanum to prepare La-CuO NPs.Next,these La-CuO NPs were functionalized with the flavonoid curcumin,and the modified NPs were termed Cu-La-CuO NPs.These NPs were chemically characterized via microscopic and spectroscopic techniques,including transmission electron microscopy(TEM),scanning electron microscopy(SEM),ultraviolet-visible(UV-Vis)adsorption,Fourier transform infrared spectroscopy(FT-IR)spectroscopy,and powder X-ray diffraction(XRD)analysis.The SEM-EDX analysis reveals the elements doped into the native CuO NPs.The TEM and XRD characterization results show,in detail,the distinct morphology and phase composition of the prepared CuO,La-CuO,and Cu-La-CuO NPs.The antimicrobial activity of the Cu-La-CuO NPs was investigated on bacteria,such as Escherichia coli(E.coli)and Bacillus subtilis(B.subtilis),and fungi,including Aspergillus niger(A niger).The Cu-La-CuO NPs delivers excellent antimicrobial effects due to the incorporation of lanthanum and curcumin into the CuO NPs.The Cu-La-CuO NPs show excellent antimicrobial potentials with an adequate zone of inhibition values around 2.2 and 2.9 mm in E.coli and A.niger,respectively.Live and dead analysis studies suggest the antimicrobial effects of lanthanum and curcumin moieties over native CuO NPs.The obtained results are significant in developing of rare earth metal-based flavo no id-conjugated nanocomposites against typical microbes.
文摘Copper nanoparticles-decorated polyaniline- derived mesoporous carbon that can serve as noble metal-free electrocatalyst for the hydrazine oxidation reaction (HzOR) is synthesized via a facile synthetic route. The material exhibits excellent electrocatalytic activity toward HzOR with low overpotential and high current density. The material also remains stable during the electrocatalytic reaction for long time. Its good electro- catalytic performance makes this material a promising alternative to conventional noble metal-based catalysts (e.g., Pt) that are commonly used in HzOR-based fuel cells.
基金Supported by the National Natural Science Foundation of China (20472057)
文摘The combination of relatively low-cost ionic liquids, simple copper salt, and terminal oxidant tert-butyl hydroperoxide provided an efficient and environmentally friendly approach to the preparation of ionone-like dienones. Six pyridinium ionic liquids were evaluated in allylic oxidation of α-ionone and β-ionone. The 60%-70% yields of 3-oxo-α-ionone were obtained with 0.02 0.20 mmol of CuCl2·2H2O as catalyst, 3-5 mmol of tert-butyl hydroperoxide as oxidant and 1 g of [Bpy]PF6 as solvent for 4-20 h at 60℃. The facile recovery and recycle of catalyst were also achieved. More significantly, peculiar phase behaviors of [Bpy]PF6 and [Epy]PF6 offered the catalytic system advantages of homogeneous reaction and heterogeneous separation. Scanning electron microscope (SEM) images of [Bpy]PF6 provided evidences for the behaviors. Transmission electron microscope (TEM) micrographs showed copper salt nanoparticles catalyst formed and stabilized in pyridinium ionic liquids.
基金supported by the National Natural Science Foundation of China(Nos.92145301,91845201,22002094,22102106,22309061)the Natural Science Foundation of Jilin Province(No.YDZJ202201ZYTS360).
文摘The selective oxidation of methane under mild conditions remains the“Holy Grail of Catalysis”.The key to activating methane and inhibiting over-oxidation of target oxygenates lies in designing active centers.Copper nanoparticles were loaded onto TiO_(2) nanofibers using the photo-deposition method.The resulting catalysts were found to effectively convert methane into C1 oxygenated products under mild conditions.Compared with previously reported catalysts,it delivers a superior performance of up to 2510.7 mmol·g_(Cu)^(-1)·h^(-1) productivity with a selectivity of around 100%at 80℃for 5 min.Microstructure characterizations and density functional theory(DFT)calculations indicate that TiO_(2) in the mixed phase of anatase and rutile significantly increases the Cu^(+)/CuO ratio of the supported Cu species,and this ratio is linearly related to the formation rate of oxygen-containing species.The CuI site promotes the generation of active O species from H_(2)O_(2) dissociation on Cu_(2)O(111).These active O species reduce the energy barrier for breaking the C-H bond of CH_(4),thus boosting the catalytic activity.The methane conversion mechanism was proposed as a methyl radical pathway to form CH_(3)OH and CH_(3)OOH,and then the generated CH_(3)OH is further oxidized to HOCH_(2)OOH.
基金supported by the University of Engineering and Technology, Lahore, Pakistan
文摘The multiwalled carbon nanotubes thin-film-based electrode was fabricated by electrophoretic deposition and modified with copper (Cu) nanoparticles to fabricate Cu/CNTs nanocomposite sensor for nonenzymatic glucose detection. The expensive glassy carbon electrode was replaced by fluorine-doped tin oxide glass containing CNTs film to confine the Cu nanoparticles growth by electrodeposition through cyclic voltammetry (CV). The ultraviolet visible and X-ray diffraction analysis revealed the successful deposition of Cu nanoparticles on the CNTs-modified electrode. The atomic force microscopy images confirrqed the morphology of electrodeposited Cu on CNTs film as uniformly dispersed particles. The electrocatalytic activity of electrode to the glucose oxidation was investigated in alkaline medium by CV and amperometric measurements. The fabricated sensor exhibited a fast response time of less than 5 s and the sensitivity of 314 μA rnM^-1 cm^-2 with linear concentration range (0.02-3.0 mM) having detection limit 10.0 μM. Due to simple preparation of sensor, Cu/CNTs nanocomposite electrodes are a suitable candidate for reliable determination of glucose with good stability.
基金supported by the National Natural Science Foundation of China(Nos.51521006,51579095,51378190)Ecology and Environment Department of Hunan,the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT-13R17)。
文摘Nanoparticles(NPs)are widely used for their special physical properties and released into the natural environment.When two types of NPs exist in the same environment,the presence of one type of NP may affect the properties of the other type of NP.This study investigated the toxic effects of multi-walled carbon nanotubes(MWCNTs)and copper oxide nanoparticles(Cu O NPs)on Tetradesmus obliquus.Both NPs had toxic effects on algae,and the toxic effects of MWCNTs were significantly stronger than Cu O NPs which the 96-hr median effective concentration to algae were 33.8 and 169.2 mg/L,respectively.Oxidative stress and cell membrane damage were the main reasons for the toxicity of NPs to algae,and they were concentration-dependent,and the existence of Cu O NPs in some groups reduced cell membrane damage caused by MWCNTs which may because that Cu O NPs formed heteroaggregation with MWCNTs,reducing the contact of nanoparticles with cell membranes,then reducing physical damage.Scanning electron microscopy(SEM)and transmission electron microscope(TEM)results indicated cell damage,the heteroaggregation of MWCNTs-Cu O NPs and obvious nanoparticles internalization.In some groups,the presence of Cu O NPs significantly reduced reactive oxygen species(ROS)level induced by MWCNTs.However,for the highest concentration group,the ROS level was much higher than that of the two NPs alone treatment groups,which might be related to the high concentration of MWCNTs promoting the internalization of Cu O NPs.MWCNTs and Cu O NPs affected and interacted with each other,causing more complex toxic effects on aquatic organisms.