Thin oxidized copper films in various thickness values are deposited onto quartz glass substrates by electron beam evaporation. The ellipsometry parameters and transmittance in a wavelength range of 300 nm-1000 nm are...Thin oxidized copper films in various thickness values are deposited onto quartz glass substrates by electron beam evaporation. The ellipsometry parameters and transmittance in a wavelength range of 300 nm-1000 nm are collected by a spectroscopic ellipsometer and a spectrophotometer respectively. The effective thickness and optical constants, i.e., refractive index n and extinction coefficient k, are accurately determined by using newly developed ellipsometry combined with transmittance iteration method. It is found that the effective thickness determined by this method is close to the physical thickness and has obvious difference from the mass thickness for very thin film due to variable density of film. Furthermore, the thickness dependence of optical constants of thin oxidized Cu films is analyzed.展开更多
The influence of fabrication on the tensile and fatigue behavior of copper films manufactured by 3 kinds of fabrication methods was investigated. The tensile and high cycle fatigue tests were performed using the test ...The influence of fabrication on the tensile and fatigue behavior of copper films manufactured by 3 kinds of fabrication methods was investigated. The tensile and high cycle fatigue tests were performed using the test machine developed by authors. Young's moduli (72, 71 and 69 GPa, respectively) are lower than the literature values (108-145 GPa), while the yield strengths were as high as 358, 350 and 346 MPa, respectively and the ultimate strengths as 462, 456 and 446 MPa, respectively. There is not much difference in the tensile properties of the 3 kinds of films. There is little difference in the fatigue properties of the 3 kinds of films but one of them has shorter fatigue life than others in high cycle region and longer fatigue life than others in low cycle region.展开更多
The surface planarity and asperity removal behavior on atomic scale in an ultrathin water environment were studied for a nanoscale process by molecular dynamics simulation.Monolayer atomic removal is achieved under bo...The surface planarity and asperity removal behavior on atomic scale in an ultrathin water environment were studied for a nanoscale process by molecular dynamics simulation.Monolayer atomic removal is achieved under both noncontact and monoatomic layer contact conditions with different water film thicknesses.The newly formed surface is relatively smooth without deformed layers,and no plastic defects are present in the subsurface.The nanoscale processing is governed by the interatomic adhering action during which the water film transmits the loading forces to the Cu surface and thereby results in the migration and removal of the surface atoms.When the scratching depth≥0.5 nm,the abrasive particle squeezes out the water film from the scratching region and scratches the Cu surface directly.This leads to the formation of trenches and ridges,accumulation of chips ahead of the particles,and generation of dislocations within the Cu substrate.This process is mainly governed by the plowing action,leading to the deterioration of the surface quality.This study makes the"0 nm planarity,0 residual defects,and 0 polishing pressure"in a nanoscale process more achievable and is helpful in understanding the nanoscale removal of materials for developing an ultra-precision manufacture technology.展开更多
Copper nitride thin film was deposited on glass substrates by reactive DC (direct current) magnetron sputtering at a 0.5 Pa N2 partial pressure and different substrate temperatures. The as-prepared film, characteriz...Copper nitride thin film was deposited on glass substrates by reactive DC (direct current) magnetron sputtering at a 0.5 Pa N2 partial pressure and different substrate temperatures. The as-prepared film, characterized with X-Ray diffraction, atomic force microscopy, and X-ray photoelectron spectroscopy measurements, showed a composed structure of Cu3N crystallites with anti-ReO3 structure and a slight oxidation of the resulted film.The crystal structure and growth rate of Cu3N films were affected strongly by substrate temperature. The preferred crystalline orientation of Cu3N films were (111) and (200) at RT, 100℃. These peaks decayed at 200℃ and 300℃ only Cu (111) peak was noticed. Growth of Cu3N films at 100℃ is the optimum substrate temperature for producing high-quality (111) Cu3N films. The deposition rate of Cu3N films estimated to be in range of 18-30 nm/min increased while the resistivity and the microhardness of Cu3N films decreased when the temperature of glass substrate increased.展开更多
This study presented a technique to deposit high strength and highly conductive copper thin films on glass substrates at room temperature. In this work, Cu thin films with thicknesses ~500 nm have been deposited on gl...This study presented a technique to deposit high strength and highly conductive copper thin films on glass substrates at room temperature. In this work, Cu thin films with thicknesses ~500 nm have been deposited on glass substrate by thermal evaporation technique at room temperature. After deposition, these films have been annealed at 200°C for 10 - 40 minutes. The thickness and annealing effect on the structural and morphological properties were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM) respectively. The results showed that by increasing thickness the copper films crystallinity in (111) direction had been increased. Also by varying the annealing time the significant changes were observed in the films crystallinity and surface morphology.展开更多
Thin films of copper titanium oxide were deposited by metal organic chemical vapour deposition technique from the synthesized single solid source precursor, copper titanium acetylacatonate Cu [Ti(C5H7O2)3] at the depo...Thin films of copper titanium oxide were deposited by metal organic chemical vapour deposition technique from the synthesized single solid source precursor, copper titanium acetylacatonate Cu [Ti(C5H7O2)3] at the deposition temperature of 420°C. The deposited films were characterized using Rutherford Backscattering Spectroscopy, Scanning Electron Microscopy with Energy Dispersive X-Ray facility attached to it, X-Ray Diffractometry, UV-Visible Spectrometry and van-der Pauw Conductivity measurement. Results show that the thickness of the prepared film is determined as 101.236 nm and the film is amorphous in structure, having average grain size of approximately 1 μm. The optical behaviour showed that the absorption edge of the film was at 918 nm near infrared with corresponding direct energy band gap of 1.35 eV. The electrical characterization of the film gave the values of resistivity, sheet resistance and conductivity of the film as 3.43 × 10-1 Ω-cm, 3.39 × 106 Ω/square and 2.91 (Ω-cm)-1 respectively.展开更多
We report here the influence of thickness on the photosensing properties of copper sulfide (CuS) thin films. The CuS films were deposited onto glass substrate by using a simple and cost effective chemical bath deposit...We report here the influence of thickness on the photosensing properties of copper sulfide (CuS) thin films. The CuS films were deposited onto glass substrate by using a simple and cost effective chemical bath deposition method. The changes in film thickness as a function of time were monitored. The films were characterized using X-ray diffraction technique (XRD), field emission scanning electron microscopy (FE-SEM), optical measurement techniques and electrical measurement. X-ray diffraction results indicate that all the CuS thin films have an orthorhombic (covellite) structure with preferential orientation along (113) direction. The intensity of the diffraction peaks increases as thickness of the film increases. Uniform deposition having nanocrystalline granular morphology distributed over the entire glass substrate was observed through FE-SEM studies. The crystalline and surface properties of the CuS thin films improved with increase in the film thickness. Transmittance (except for 210 nm thick CuS film) together with band gap values was found to decrease with increase in thickness. I-V measurements under dark and illumination condition show that the CuS thin films give a good photoresponse.展开更多
Copper oxide thin films were prepared by a direct-current magnetron sputtering method followed by a thermal annealing treatment at 100-500 ℃. The obtained films were characterized by X-ray diffraction, UV-vis absorpt...Copper oxide thin films were prepared by a direct-current magnetron sputtering method followed by a thermal annealing treatment at 100-500 ℃. The obtained films were characterized by X-ray diffraction, UV-vis absorption spectroscopy, scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. With the increase of the annealing temperature, it was found that the films transformed sequentially from amorphous to single-phase Cu (100℃), mixed-phase of Cu and Cu2O (150 ℃), single-phase Cu2O (200 ℃), then to mixed-phase of Cu2O and CuO (300 ℃), and finally to single-phase CuO (400 - 500 ℃). Further analyses indicated that the Cu/Cu2O thin films and the Cu:O thin films presented no further oxidation even on the surface in air atmosphere. Additionally, the visible-light photocatalytic behavior of the copper oxide thin films on the degradation of methylene blue (MB) was also investigated, indicating that the films with pure Cu2O phase or Cu/Cu2O mixed phases have excellent photocatalytic efficiencies.展开更多
This paper showed simple and effective synthesis of copper nanoparticles within controlled diameter using direct electroless deposition on glass substrates, following the sensitization and activation steps. Electroles...This paper showed simple and effective synthesis of copper nanoparticles within controlled diameter using direct electroless deposition on glass substrates, following the sensitization and activation steps. Electroless-deposited metals, such as Cu, Co, Ni, and Ag, and their alloys had many advantages in micro- and nanotechnologies. The structural, morphological, and optical properties of copper deposits were characterized using X-ray diffraction (XRD), atomic force microscopy (AFM), and UV-Vis spectroscopy. The structural data was further analyzed using the Rietveld refinement program. Structural studies reveal that the deposited copper prefers a (111) orientation. AFM studies suggest the deposited materials form compact, uniform, and nanocrystalline phases with a high tendency to self-organize. The data show that the particle size can be controlled by controlling the activator concentration. The absorption spectra of the as-deposited copper nanoparticles reveal that the plasmonic peak broadens and exhibits a blue shift with decreasing particle size.展开更多
Transition metal chalcogenide nanocomposite thin films deposited by chemical routes are currently attracting wide attention being inexpensive, simple and have utility for large area applications. The role of substrate...Transition metal chalcogenide nanocomposite thin films deposited by chemical routes are currently attracting wide attention being inexpensive, simple and have utility for large area applications. The role of substrate becomes very important in film deposition as well as in controlling their properties due to strain induced properties modification and lattice mismatch. CuS/PVA nanocomposite thin films were successfully deposited on glass and silicon substrates using sol-gel technique. Thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), UV-visible (UV-VIS) and Raman spectroscopy. Structural data confirm the amorphous nature of as grown films which transform into crystalline films after annealing at 200°C. The degree of crystallinity seems to be better in film deposited on silicon substrate in comparison to those grown over glass substrate with average crystallite sizes ≅?4.00 nm and 7.00 nm for films deposited on glass and silicon substrate respectively. Atomic force microscopy (AFM) images in dynamic as well as contact modes display nanoparticles embedded in polymer network. The films surface roughness parameters quantitatively estimated from AFM micrographs are compared. Raman spectra show a sharp peak at ≅474 cm¯1 assigned to S-S stretching mode of S2 ions in films grown on both substrates and associated as due to presence of hexagonal (covellite) crystal structure. Optical band gaps of thin film on glass and silicon substrate are 2.10 eV and 2.02 eV respectively. The effect of substrate on the measured properties is discussed.展开更多
A stripping method for the determination of hypoxanthine in the presence of copper at the submicromolar concentration levels is described. The method is based on controlled adsorptive accumulation of hypoxanthine-copp...A stripping method for the determination of hypoxanthine in the presence of copper at the submicromolar concentration levels is described. The method is based on controlled adsorptive accumulation of hypoxanthine-copper at the thin-film mercury electrode followed by a fast linear scan voltammetric measurement of the surface species. Optimum experimental conditions were found to be the use of 1.0 × 10﹣3 mol·L﹣1 NaOH solution as electrolyte supporting, an accumulation potential of ﹣0.50 V and a linear scan rate of 200 mV·s﹣1. The response of hypoxanthine-copper is linear over the concentration ranges of 10 - 60 ppb. For an accumulation time of 30 minutes, the detection limit was found to be 250 ppt (1.8 × 10﹣9 mol·L﹣1). Adequate conditions for measuring the hypoxanthine in the presence of metal ions, xanthine, uric acid and other nitrogenated bases were also investigated. The utility of the method is demonstrated by the presence of hypoxanthine associated in ATP or ssDNA.展开更多
Copper selenide(Cu3Se2/thin films have been synthesized with Se as the precursor in aqueous solution by chemical bath deposition technique at room temperature.We have investigated the influence of the growth time ran...Copper selenide(Cu3Se2/thin films have been synthesized with Se as the precursor in aqueous solution by chemical bath deposition technique at room temperature.We have investigated the influence of the growth time ranging from 30 to 90 min on structural,optical and electrical properties of Cu3Se2 thin films.The as-grown film at 60 min exhibits a tetragonal structure and is(101)oriented.The maximum value of crystal size DD55 nm is attained for Cu3Se2 films grown at 60 min.The Raman spectrum reveals a pronounced peak at 259 cm 1,which is assigned to vibrational(stretching)modes from the covalent Se–Se bonds.The optical band gap energy is 1.91 to2.01 eV with growth time increased from 30 to 90 min.The scanning electron microscopy(SEM)study reveals that the grains are uniform and spread over the entire surface of the substrate of the film at 60 min.The Hall effect study reveals that the film exhibits p-type conductivity.The synthesized film showed good absorbance in the visible region which signifies that synthesized Cu3Se2 films can be suitable as a sensitized material in semiconductor sensitized solar cells.展开更多
采用 PVD 和 CVD 技术制备 Cu/TiN/PI 试样。研究表明,TiN 薄膜可以有效地阻挡 Cu 向 PI 基板内部扩散。CVD工艺制备的 Cu 膜内部残余应力很小,Cu 膜有相对高的结合强度;而 PVD 制备的 Cu 膜,在有 TiN 阻挡层存在的情况下,Cu 膜内存在...采用 PVD 和 CVD 技术制备 Cu/TiN/PI 试样。研究表明,TiN 薄膜可以有效地阻挡 Cu 向 PI 基板内部扩散。CVD工艺制备的 Cu 膜内部残余应力很小,Cu 膜有相对高的结合强度;而 PVD 制备的 Cu 膜,在有 TiN 阻挡层存在的情况下,Cu 膜内存在拉应力,拉应力降低了 Cu 膜结合强度。300℃退火可以消除膜内残余应力,结合强度提高。展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11074232,10874160,and 21002097)the National Basic Research Program of China(Grant Nos.2011CB932801 and 2012CB933702)
文摘Thin oxidized copper films in various thickness values are deposited onto quartz glass substrates by electron beam evaporation. The ellipsometry parameters and transmittance in a wavelength range of 300 nm-1000 nm are collected by a spectroscopic ellipsometer and a spectrophotometer respectively. The effective thickness and optical constants, i.e., refractive index n and extinction coefficient k, are accurately determined by using newly developed ellipsometry combined with transmittance iteration method. It is found that the effective thickness determined by this method is close to the physical thickness and has obvious difference from the mass thickness for very thin film due to variable density of film. Furthermore, the thickness dependence of optical constants of thin oxidized Cu films is analyzed.
文摘The influence of fabrication on the tensile and fatigue behavior of copper films manufactured by 3 kinds of fabrication methods was investigated. The tensile and high cycle fatigue tests were performed using the test machine developed by authors. Young's moduli (72, 71 and 69 GPa, respectively) are lower than the literature values (108-145 GPa), while the yield strengths were as high as 358, 350 and 346 MPa, respectively and the ultimate strengths as 462, 456 and 446 MPa, respectively. There is not much difference in the tensile properties of the 3 kinds of films. There is little difference in the fatigue properties of the 3 kinds of films but one of them has shorter fatigue life than others in high cycle region and longer fatigue life than others in low cycle region.
基金National Natural Science Foundation of China[Grant numbers 51375364 and 51475359]Natural Science Foundation of Shaanxi Province of China[2014JM6219]。
文摘The surface planarity and asperity removal behavior on atomic scale in an ultrathin water environment were studied for a nanoscale process by molecular dynamics simulation.Monolayer atomic removal is achieved under both noncontact and monoatomic layer contact conditions with different water film thicknesses.The newly formed surface is relatively smooth without deformed layers,and no plastic defects are present in the subsurface.The nanoscale processing is governed by the interatomic adhering action during which the water film transmits the loading forces to the Cu surface and thereby results in the migration and removal of the surface atoms.When the scratching depth≥0.5 nm,the abrasive particle squeezes out the water film from the scratching region and scratches the Cu surface directly.This leads to the formation of trenches and ridges,accumulation of chips ahead of the particles,and generation of dislocations within the Cu substrate.This process is mainly governed by the plowing action,leading to the deterioration of the surface quality.This study makes the"0 nm planarity,0 residual defects,and 0 polishing pressure"in a nanoscale process more achievable and is helpful in understanding the nanoscale removal of materials for developing an ultra-precision manufacture technology.
文摘Copper nitride thin film was deposited on glass substrates by reactive DC (direct current) magnetron sputtering at a 0.5 Pa N2 partial pressure and different substrate temperatures. The as-prepared film, characterized with X-Ray diffraction, atomic force microscopy, and X-ray photoelectron spectroscopy measurements, showed a composed structure of Cu3N crystallites with anti-ReO3 structure and a slight oxidation of the resulted film.The crystal structure and growth rate of Cu3N films were affected strongly by substrate temperature. The preferred crystalline orientation of Cu3N films were (111) and (200) at RT, 100℃. These peaks decayed at 200℃ and 300℃ only Cu (111) peak was noticed. Growth of Cu3N films at 100℃ is the optimum substrate temperature for producing high-quality (111) Cu3N films. The deposition rate of Cu3N films estimated to be in range of 18-30 nm/min increased while the resistivity and the microhardness of Cu3N films decreased when the temperature of glass substrate increased.
文摘This study presented a technique to deposit high strength and highly conductive copper thin films on glass substrates at room temperature. In this work, Cu thin films with thicknesses ~500 nm have been deposited on glass substrate by thermal evaporation technique at room temperature. After deposition, these films have been annealed at 200°C for 10 - 40 minutes. The thickness and annealing effect on the structural and morphological properties were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM) respectively. The results showed that by increasing thickness the copper films crystallinity in (111) direction had been increased. Also by varying the annealing time the significant changes were observed in the films crystallinity and surface morphology.
文摘Thin films of copper titanium oxide were deposited by metal organic chemical vapour deposition technique from the synthesized single solid source precursor, copper titanium acetylacatonate Cu [Ti(C5H7O2)3] at the deposition temperature of 420°C. The deposited films were characterized using Rutherford Backscattering Spectroscopy, Scanning Electron Microscopy with Energy Dispersive X-Ray facility attached to it, X-Ray Diffractometry, UV-Visible Spectrometry and van-der Pauw Conductivity measurement. Results show that the thickness of the prepared film is determined as 101.236 nm and the film is amorphous in structure, having average grain size of approximately 1 μm. The optical behaviour showed that the absorption edge of the film was at 918 nm near infrared with corresponding direct energy band gap of 1.35 eV. The electrical characterization of the film gave the values of resistivity, sheet resistance and conductivity of the film as 3.43 × 10-1 Ω-cm, 3.39 × 106 Ω/square and 2.91 (Ω-cm)-1 respectively.
文摘We report here the influence of thickness on the photosensing properties of copper sulfide (CuS) thin films. The CuS films were deposited onto glass substrate by using a simple and cost effective chemical bath deposition method. The changes in film thickness as a function of time were monitored. The films were characterized using X-ray diffraction technique (XRD), field emission scanning electron microscopy (FE-SEM), optical measurement techniques and electrical measurement. X-ray diffraction results indicate that all the CuS thin films have an orthorhombic (covellite) structure with preferential orientation along (113) direction. The intensity of the diffraction peaks increases as thickness of the film increases. Uniform deposition having nanocrystalline granular morphology distributed over the entire glass substrate was observed through FE-SEM studies. The crystalline and surface properties of the CuS thin films improved with increase in the film thickness. Transmittance (except for 210 nm thick CuS film) together with band gap values was found to decrease with increase in thickness. I-V measurements under dark and illumination condition show that the CuS thin films give a good photoresponse.
基金Funded in part by the National Natural Science Foundation of China(Nos.51175363,51274149)the Program for Changjiang Scholar and Innovative Research Team in University(No.IRT0972)+1 种基金the Outstanding Innovation Project in Shanxi Province(No.20133027)Taiyuan University of Science and Technology Innovation Fund(No.2013A004)
文摘Copper oxide thin films were prepared by a direct-current magnetron sputtering method followed by a thermal annealing treatment at 100-500 ℃. The obtained films were characterized by X-ray diffraction, UV-vis absorption spectroscopy, scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. With the increase of the annealing temperature, it was found that the films transformed sequentially from amorphous to single-phase Cu (100℃), mixed-phase of Cu and Cu2O (150 ℃), single-phase Cu2O (200 ℃), then to mixed-phase of Cu2O and CuO (300 ℃), and finally to single-phase CuO (400 - 500 ℃). Further analyses indicated that the Cu/Cu2O thin films and the Cu:O thin films presented no further oxidation even on the surface in air atmosphere. Additionally, the visible-light photocatalytic behavior of the copper oxide thin films on the degradation of methylene blue (MB) was also investigated, indicating that the films with pure Cu2O phase or Cu/Cu2O mixed phases have excellent photocatalytic efficiencies.
文摘This paper showed simple and effective synthesis of copper nanoparticles within controlled diameter using direct electroless deposition on glass substrates, following the sensitization and activation steps. Electroless-deposited metals, such as Cu, Co, Ni, and Ag, and their alloys had many advantages in micro- and nanotechnologies. The structural, morphological, and optical properties of copper deposits were characterized using X-ray diffraction (XRD), atomic force microscopy (AFM), and UV-Vis spectroscopy. The structural data was further analyzed using the Rietveld refinement program. Structural studies reveal that the deposited copper prefers a (111) orientation. AFM studies suggest the deposited materials form compact, uniform, and nanocrystalline phases with a high tendency to self-organize. The data show that the particle size can be controlled by controlling the activator concentration. The absorption spectra of the as-deposited copper nanoparticles reveal that the plasmonic peak broadens and exhibits a blue shift with decreasing particle size.
文摘Transition metal chalcogenide nanocomposite thin films deposited by chemical routes are currently attracting wide attention being inexpensive, simple and have utility for large area applications. The role of substrate becomes very important in film deposition as well as in controlling their properties due to strain induced properties modification and lattice mismatch. CuS/PVA nanocomposite thin films were successfully deposited on glass and silicon substrates using sol-gel technique. Thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), UV-visible (UV-VIS) and Raman spectroscopy. Structural data confirm the amorphous nature of as grown films which transform into crystalline films after annealing at 200°C. The degree of crystallinity seems to be better in film deposited on silicon substrate in comparison to those grown over glass substrate with average crystallite sizes ≅?4.00 nm and 7.00 nm for films deposited on glass and silicon substrate respectively. Atomic force microscopy (AFM) images in dynamic as well as contact modes display nanoparticles embedded in polymer network. The films surface roughness parameters quantitatively estimated from AFM micrographs are compared. Raman spectra show a sharp peak at ≅474 cm¯1 assigned to S-S stretching mode of S2 ions in films grown on both substrates and associated as due to presence of hexagonal (covellite) crystal structure. Optical band gaps of thin film on glass and silicon substrate are 2.10 eV and 2.02 eV respectively. The effect of substrate on the measured properties is discussed.
文摘A stripping method for the determination of hypoxanthine in the presence of copper at the submicromolar concentration levels is described. The method is based on controlled adsorptive accumulation of hypoxanthine-copper at the thin-film mercury electrode followed by a fast linear scan voltammetric measurement of the surface species. Optimum experimental conditions were found to be the use of 1.0 × 10﹣3 mol·L﹣1 NaOH solution as electrolyte supporting, an accumulation potential of ﹣0.50 V and a linear scan rate of 200 mV·s﹣1. The response of hypoxanthine-copper is linear over the concentration ranges of 10 - 60 ppb. For an accumulation time of 30 minutes, the detection limit was found to be 250 ppt (1.8 × 10﹣9 mol·L﹣1). Adequate conditions for measuring the hypoxanthine in the presence of metal ions, xanthine, uric acid and other nitrogenated bases were also investigated. The utility of the method is demonstrated by the presence of hypoxanthine associated in ATP or ssDNA.
基金the Departmental Research Development Programme,Department of Physics,Savitribai Phule Pune University,India for their financial support for research work
文摘Copper selenide(Cu3Se2/thin films have been synthesized with Se as the precursor in aqueous solution by chemical bath deposition technique at room temperature.We have investigated the influence of the growth time ranging from 30 to 90 min on structural,optical and electrical properties of Cu3Se2 thin films.The as-grown film at 60 min exhibits a tetragonal structure and is(101)oriented.The maximum value of crystal size DD55 nm is attained for Cu3Se2 films grown at 60 min.The Raman spectrum reveals a pronounced peak at 259 cm 1,which is assigned to vibrational(stretching)modes from the covalent Se–Se bonds.The optical band gap energy is 1.91 to2.01 eV with growth time increased from 30 to 90 min.The scanning electron microscopy(SEM)study reveals that the grains are uniform and spread over the entire surface of the substrate of the film at 60 min.The Hall effect study reveals that the film exhibits p-type conductivity.The synthesized film showed good absorbance in the visible region which signifies that synthesized Cu3Se2 films can be suitable as a sensitized material in semiconductor sensitized solar cells.
文摘采用 PVD 和 CVD 技术制备 Cu/TiN/PI 试样。研究表明,TiN 薄膜可以有效地阻挡 Cu 向 PI 基板内部扩散。CVD工艺制备的 Cu 膜内部残余应力很小,Cu 膜有相对高的结合强度;而 PVD 制备的 Cu 膜,在有 TiN 阻挡层存在的情况下,Cu 膜内存在拉应力,拉应力降低了 Cu 膜结合强度。300℃退火可以消除膜内残余应力,结合强度提高。