Alumina dispersion strengthened copper(ADSC) alloy was produced by internal oxidation. The hardness, ultimate tensile strength and electrical conductivity measurements and microstructure observation on the produced ...Alumina dispersion strengthened copper(ADSC) alloy was produced by internal oxidation. The hardness, ultimate tensile strength and electrical conductivity measurements and microstructure observation on the produced 0.12%ADSC (0.24% Al2O3, mass fraction) and 0.25%ADSC (0.50% Al2O3) subjected to different annealing treatments were conducted. The results show that the microstructure of the produced ADSC is characterized by an uniform distribution of nano-Al2O3 particles in Cu-matrix; the particles range in size from 20 to 50 nm with an interparticle spacing of 30100 nm. The produced 0.12%ADSC can maintain more than 87% hardness retention after 900 ℃, 1 h annealing treatment; the recrystallization can be largely retarded and is not fully completed even after annealing at 1 000 ℃ for 1 h, followed by cold deformation of 84%; local grain growth can be observed after 1 050 ℃, 1 h annealing treatment. The results also show that increasing either the alumina content or cold deformation degree increases the hardness of the produced ADSC.展开更多
Large quantities of sludge are produced during water treatment processes. Recently, sludge has been treated as waste and disposed of in landfills, which increases the environmental burdens and the operational cost. Th...Large quantities of sludge are produced during water treatment processes. Recently, sludge has been treated as waste and disposed of in landfills, which increases the environmental burdens and the operational cost. Therefore, sludge reuse has become a significant environmental issue. In this study, adsorption of copper ions (Cu^2+) onto calcined sludge was investigated under various operational conditions (with varying temperature, Cu^2+ initial concentration, pH, and sludge dosage). The prepared sludge material was characterized with transmission electron microscopy (TEM), X-ray diffraction (XRD), dynamic light scattering (DLS), and Brunauer-Emmett-Teller (BET) surface area. The sorption capacity of sludge was directly proportional to the initial Cu^2+ concentration and inversely proportional to the sludge dosage. The optimum operational pH and solution temperature were 6.6 and 80℃, respectively. The experimental results followed a Langmuir isotherm and pseudo-first-order adsorption kinetics. Thermodynamic parameters such as activation energy, change in free energy, enthalpy, and entropy were calculated. Thermodynamic analyses indicated that the sorption of copper ions onto the calcined sludge was driven by a physical adsorption process. The prepared sludge was proven to be an excellent adsorbent material for the removal of Cu^2+ from an aqueous solution under optimum conditions.展开更多
With the means of electron backscattered diffraction(EBSD),mechanical properties test and digital eddy current metal conductivity,the single crystal copper cold-welded joint was tested and analyzed,the structure chang...With the means of electron backscattered diffraction(EBSD),mechanical properties test and digital eddy current metal conductivity,the single crystal copper cold-welded joint was tested and analyzed,the structure change of cold-welded joint and the effect of heat treating on the structure and property of cold-welded joint were discussed.The results show that:The deformation area of the single crystal copper cold welded joint is broken,the crystalline grain at the interface of the joint is refined,and the single crystal structure is still maintained in the base metal area.The hardness of the deformation area increases greatly,the conductivity of the joint does not change much,and the tensile strength of the joint reaches about 70%of that of the base metal.At the interface of the heat treating joint,the single crystal structure of the deformation area and the base metal area are destroyed,and the grains grow up at the interface and the orientation is different.The hardness of the joint interface is much lower than that of the non-heat treating joint,the electrical conductivity of the joint is good,and the tensile strength of the joint is higher than that of the base metal.展开更多
The effect of prior-heat treatments at 500℃, 600℃ and 700℃ on the creep behavior of an industrial drawn copper has been studied under constant stresses (98, 108 and 118 MPa) and temperatures (290℃ and 340℃). The ...The effect of prior-heat treatments at 500℃, 600℃ and 700℃ on the creep behavior of an industrial drawn copper has been studied under constant stresses (98, 108 and 118 MPa) and temperatures (290℃ and 340℃). The results revealed that the creep behavior and the creep life of the material depend strongly on these prior-heat treatments. The apparent activation energy Qc for different creep tests of a drawn copper wire was calculated. The fracture mechanism of the material is characterized using optical microscopy.展开更多
It is known that one of the causes of pitting corrosion of copper tubes is residual carbon on the inner surface. It was confirmed that type I” pitting corrosion of the copper tube is suppressed by keeping the residua...It is known that one of the causes of pitting corrosion of copper tubes is residual carbon on the inner surface. It was confirmed that type I” pitting corrosion of the copper tube is suppressed by keeping the residual carbon amount at 2 mg/m<sup>2</sup> or less, which is lower than that of the type I’ pitting corrosion, or by removing the fine particles that are the corrosion product of galvanized steel pipes. The developed water treatment chemical was evaluated using three types of copper tubes with residual carbon amounts of 0 mg/m<sup>2</sup>, 0.5 mg/m<sup>2</sup>, and 6.1 mg/m<sup>2</sup>. The evaluation was conducted for three months in an open-circulation cooling water system and compared with the current water treatment chemical. Under the current water treatment chemical conditions, only the copper tube with a residual carbon amount of 6.1 mg/m<sup>2</sup> showed a significant increase in the natural corrosion potential after two weeks, and pitting corrosion occurred. No pitting corrosion and no increase in the natural corrosion potential were observed in any of the copper tubes that were treated with the developed water treatment chemical. In addition, the polarization curve was measured using the cooling water from this field test, and the anodic polarization of two cooling waters was compared. For copper tubes with a large amount of residual carbon, the current density near 0 mV vs. Ag/AgCl electrode (SSE) increased when the developed water treatment chemical was added.展开更多
Acid mine drainage (AMD) with high concentrations of sulfates and metals is generated by the oxidation of sulfide beating wastes. CaCO3-rich marble cutting waste is a residual material produced by the cutting and po...Acid mine drainage (AMD) with high concentrations of sulfates and metals is generated by the oxidation of sulfide beating wastes. CaCO3-rich marble cutting waste is a residual material produced by the cutting and polishing of marble stone. In this study, the feasibility of using the marble cutting waste as an acid-neutralizing agent to inhibit AMD and immobilize heavy metals from copper flotation tailings (sul- fide-beating wastes) was investigated. Continuous-stirring shake-flask tests were conducted for 40 d, and the pH value, sulfate content, and dissolved metal content of the leachate were analyzed every 10 d to determine the effectiveness of the marble cutting waste as an acid neu- tralizer. For comparison, CaCO3 was also used as a neutralizing agent. The average pH value of the leachate was 2.1 at the beginning of the experiment (t = 0). In the experiment employing the marble cutting waste, the pH value of the leachate changed from 6.5 to 7.8, and the sul- fate and iron concentrations decreased from 4558 to 838 mg/L and from 536 to 0.01 mg/L, respectively, after 40 d. The marble cutting waste also removed more than 80wt% of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) from AMD generated by copper flotation tailings.展开更多
The bioleaching of copper sulphide minerals was investigated by using A. ferrooxidans ATF6. The result shows the preferential order of the minerals bioleaching as djurleite〉bomite〉pyritic chalcopyrite〉covellite〉po...The bioleaching of copper sulphide minerals was investigated by using A. ferrooxidans ATF6. The result shows the preferential order of the minerals bioleaching as djurleite〉bomite〉pyritic chalcopyrite〉covellite〉porphyry chalcopyfite. The residues were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is indicated that jarosite may not be responsible for hindered disso- lution. The elemental sulfur layer on the surface of pyritic chalcopyrite residues is cracked. The compact surface layer of porphyry chalcopy- rite may strongly hinder copper extraction. X-ray photoelectron spectroscopy (XPS) further confirms that the passivation layers of covellite, pyritic chalcopyrite, and porphyry chalcopyrite are copper-depleted sulphide Cu4S11, S8, and copper-rich iron-deficient polysulphide CtuFe2S9, resoectivelv. The ability of these oassivation layers was found as Cu4Fe2S9〉Cu4S11〉S8〉iarosite.展开更多
The kinetics of the chemical leaching of copper from low grade ore in ferric sulfate media was investigated using the constrained least square optimization technique. The experiments were carried out for different par...The kinetics of the chemical leaching of copper from low grade ore in ferric sulfate media was investigated using the constrained least square optimization technique. The experiments were carried out for different particle sizes in both the reactor and column at constant oxidation-reduction potential (Eh), pH values, and temperature. The main copper mineral was chalcopyrite. About 40% of Cu recovery is obtained after 7 d of reactor leaching at 85℃ using -0.5 mm size fraction, while the same recovery is obtained at 75℃ after 24 d. Also, about 23% of Cu recovery is obtained after 60 d of column leaching for +4--8 mm size fraction whereas the Cu recovery is as low as about 15% for +8--12.7 and +12.7--25 mm size fractions. A 4-stage model for chalcopyrite dissolution was used to explain the observed dissolution behaviors. The results show that thick over-layers of sulphur components cause the parabolic behavior of chalcopyrite dissolution and the precipitation of Fe3+ plays the main role in chalcopyrite passivation. In the case of coarse particles, transformation from one stage to another takes a longer time, thus only two stages including the initial reaction on fresh surfaces and S0 deposition are observed.展开更多
Permeation of Cu(Ⅱ) from its aqueous solution through a supported liquid membrane (SLM) containing di(2-ethylhexyl)phosphoric acid (D2EHPA) carrier dissolved in coconut oil has been studied. The effects of C...Permeation of Cu(Ⅱ) from its aqueous solution through a supported liquid membrane (SLM) containing di(2-ethylhexyl)phosphoric acid (D2EHPA) carrier dissolved in coconut oil has been studied. The effects of Cu(Ⅱ), pH (in feed), H2SO4 (stripping) and D2EHPA (in membrane) concentrations have been investigated. The stability of the D2EHPA-coconut oil has also been evaluated. High Cu(Ⅱ) concentration in the feed leads to an increase in flux from 4.1 × 10^-9 to 8.9 × 10^-9 mol/(m^2·s) within the Cu(Ⅱ) concentration range 7.8×10^-4-78.6×10^-4 mol/L at pH of 4.0 in the feed and 12.4 × 10^-4 mol/L D2EHPA in the membrane phase. Increase in H2SO4 concentration in strip solution leads to an increase in copper ions flux up to 0.25 mol/L H2SO4, providing a maximum flux of 7.4 × 10^-9 mol/(m^2·s). The optimum conditions for Cu(Ⅱ) transport are, pH of feed 4.0, 0.25 mol/L H2SO4 in strip phase and 12.4 × 10^-4 mol/L D2EHPA (membrane) in 0.5 μm pore size polytetrafluoroethylene (PTFE) membrane. It has been observed that Cu(Ⅱ) flux across the membrane tends to increase with the concentration of copper ions. Application of the method developed to copper plating bath rinse solutions has been found to be successful in the recovery of Cu(Ⅱ).展开更多
The enrichment of copper from copper–cyanide wastewater by solvent extraction was investigated using a quaternary ammonium salt as an extractant. The influences of important parameters, e.g., organic-phase components...The enrichment of copper from copper–cyanide wastewater by solvent extraction was investigated using a quaternary ammonium salt as an extractant. The influences of important parameters, e.g., organic-phase components, aqueous pH values, temperature, inorganic anion impurities, CN/Cu molar ratio, and stripping reagents, were examined systematically, and the optimal conditions were determined. The results indicated that copper was effectively concentrated from low-concentration solutions using Aliquat 336 and that the extraction efficiency increased linearly with increasing temperature. The aqueous pH value and concentrations of inorganic anion impurities only weakly affected the extraction process when varied in appropriate ranges. The CN/Cu molar ratio affected the extraction efficiency by changing the distribution of copper–cyanide complexes. The difference in gold leaching efficiency between using raffinate and fresh water was negligible.展开更多
The effects of applied normal stress, surface roughness, and initial grain size on the microstructure of pure Cu developed during platen friction sliding deformation (PFSD) processing were investigated. In each case...The effects of applied normal stress, surface roughness, and initial grain size on the microstructure of pure Cu developed during platen friction sliding deformation (PFSD) processing were investigated. In each case, the deformation microstructure was characterized and the hardness of the treated surface layer was measured to evaluate its strength. The results indicated that the thickness of the deformed layer and the hardness at any depth increased with increasing normal stress. A smaller steel platen surface roughness resulted in less microstruc- tural refinement, whereas the microstructural refinement was enhanced by decreasing the surface roughness of the Cu sample. In the case of a very large initial grain size (d 〉 10 mm), a sharper transition from fine-grain microstructure to undeformed material was obtained in the treated surface layer after PFSD processing.展开更多
Nanosecond-pulse diffuse discharges could provide high-density plasma and high-energy electrons at atmospheric pressure. In this paper, the surface treatment of Cu by nanosecond-pulse diffuse discharges is conducted i...Nanosecond-pulse diffuse discharges could provide high-density plasma and high-energy electrons at atmospheric pressure. In this paper, the surface treatment of Cu by nanosecond-pulse diffuse discharges is conducted in atmospheric air. Factors influencing the water contact angle (WCA), chemical composition and microhardness, such as the gap spacing and treatment time, are investigated. The results show that after the plasma surface treatment, the WCA considerably decreases from 87~ to 42.3~, and the surface energy increases from 20.46 mJ m-2 to 66.28 mJ m-2. Results of energy dispersive x-ray analysis show that the concentration of carbon decreases, but the concentrations of oxygen and nitrogen increase significantly. Moreover, the microhardness increases by approximately 30% after the plasma treatment. The aforementioned changes on the Cu surface indicate the plasma surface treatment enhances the hydrophilicity and microhardness, and it cleans the carbon and achieves oxidization on the Cu surface. Furthermore, by increasing the gap spacing and treatment time, better treatment effects can be obtained. The micmhardness in the case of a 2.5 cm gap is higher than that in the case of a 3 cm gap. More oxygen and nitrogen species appear on the Cu surface for the 2.5 cm gap treatment than for the 3 cm gap treatment. The WCA significantly decreases with the treatment thne when it is no longer than 90 s, and then it reaches saturation. In addition, more oxygen-containing and nitrogen-containing groups appear after extended plasma treatment time. They contribute to the improvement of the hydrophilicity and oxidation on the Cu surface.展开更多
Bioleaching is an environmentally friendly method for extraction of metal from ores. In this study, bioleaching of copper oxide ore by Pseudomonas aeruginosa was investigated. Pseudomonas aeruginosa is a heterotrophic...Bioleaching is an environmentally friendly method for extraction of metal from ores. In this study, bioleaching of copper oxide ore by Pseudomonas aeruginosa was investigated. Pseudomonas aeruginosa is a heterotrophic bactermm that can produce various organic acids in an appropriate culture medium, and these acids can operate as leaching agents. The parameters, such as particle size, glucose percentage in the culture medium, bioleaching time, and solid/liquid ratio were optimized. Optimum bioleaching conditions were found as follows: particle size of 150-177 μm, glucose percentage of 6%, bioleaching time of 8 d, and solid/liquid ratio of 1:80. Under these conditions, 53% of copper was extracted.展开更多
Treatment with metallic copper for the removal of elemental sulfur from bitumen extracted from sedimentary rocks or petroleum is the most widely used method. Little attention has been paid, however, to its disadvantag...Treatment with metallic copper for the removal of elemental sulfur from bitumen extracted from sedimentary rocks or petroleum is the most widely used method. Little attention has been paid, however, to its disadvantages. It was observed that copper can interact with some polar organic substances during conventional sulfur removal, which can strongly influence the quantitative and qualitative determination of bitumen, as has been confirmed by interaction of long-chain fatty acids with copper. The copper soap generated was analyzed by element analysis, inductively coupled plasma optical emission spectrometry (ICP-OES), thermal analysis (TG-DSC) and Fourier Transform Infrared spectroscopy (FTIR). Mechanism of the interaction was investigated and elucidated. Our experimental results would necessitate improvement of the present method for sulfur removal and/or a search for a new one.展开更多
Cr-Zr-Cu alloy electrodes for resistance spot welding of aluminium alloy are treated by deep cryogenic treatment processes. The Cr-Zr-Cu alloy electrodes are analyzed by transmission electron microscope( TEM ) , and...Cr-Zr-Cu alloy electrodes for resistance spot welding of aluminium alloy are treated by deep cryogenic treatment processes. The Cr-Zr-Cu alloy electrodes are analyzed by transmission electron microscope( TEM ) , and results show that the common dislocation in Cr-Zr-Cu alloy electrodes is changed into the dislocation loop, and twin crystal is found after deep cryogenic treatment. The parallel twin crystal band is observed by selected electron diffraction(SED) and the twin crystal plane is marked as ( 111 ). The Cr-Zr-Cu alloy electrode is studied by X-ray diffraction( XRD ) and results show that the intensity of diffraction peak is obviously changed after deep cryogenic treatment, and the grain rotates to preferred orientation. The Cr-Zr- Cu alloy electrode is studied by positron annihilation technique (PAT) and results indicate that the amount of vacancy defects is less than that of Cr-Zr-Cu alloy before deep cryogenic treatment. The main elements in Cr-Zr-Cu alloy are studied with X- ray photoelctron spectroscopy( XPS ) and the intensity of spectrum peak is increased after deep cryogenic treatment.展开更多
Cu-Ni-Al alloys at different concentrations were obtained using a high frequency induction melting unit, keeping a balance in the nominal compositions. Light alloys are important to be used in industrial applications....Cu-Ni-Al alloys at different concentrations were obtained using a high frequency induction melting unit, keeping a balance in the nominal compositions. Light alloys are important to be used in industrial applications. Aluminum additions result in a positive hardness increment of the ternary alloys in comparison with the binary Cu-Ni alloys. Generalized wear mechanisms of the alloys with low aluminum content are basically type abrasive, while samples with 5 and 10 at.% Al present an oxidative-adhesive wear mechanism. Wear results have indicated that aluminum addition affects positively the wear resistance, mainly in samples with high aluminum content product of the creation during the test of different oxides corresponding to the elements present in the alloys.展开更多
In order to improve the leaching resistance of active ingredient-copper in ammoniacal copper quat-type D (ACQ-D) treated Chinese fir (Cunninghamia lanceolata Hook.), microwave post-treatments were carried out. The...In order to improve the leaching resistance of active ingredient-copper in ammoniacal copper quat-type D (ACQ-D) treated Chinese fir (Cunninghamia lanceolata Hook.), microwave post-treatments were carried out. The percentages of leached copper from ACQ-D treated Chinese fir with different microwave post-treatments were obtained after leaching tests by analyzing the copper retention in treated wood. The fixation mechanism of copper in the treated wood was determined with the help of SEM and FTIR spectra, while the valence conversion of copper after microwave post-treatments was studied by UV spectroscopy. Our experimental results show that the percentage of leached copper was reduced significantly after microwave post-treatment over time. This development was reinforced by allowing even more time for the treatment as well as with an increase in the power of microwave post-treatment. The leaching resistance of copper in wrapped samples was better than that in unwrapped samples, which is attributed to the combined effects of temperature and moisture content. Compared with air-dried samples, the valence conversion in the samples with microwave post-treatments changed slightly, which demonstrates that microwave post-treatments cannot impair the natural decay resistance of ACQ-D treated wood. SEM and FTIR spectra showed the presence of crystal particles formed by chemical reactions between copper and wood ingredients in wood cell walls and wood pits. Only a small amount of copper reacted with cellulose, while lignin and hemicellulose were the major bonding sites for copper in wood. Given the experimental results of mechanical properties, microwave post-treatments had a slight effect on the compression strength parallel to the grain and on the erystallinity of ACQ-D treated Chinese fir.展开更多
基金Project(0122021300) supported by the Natural Science Foundation of Henan Province
文摘Alumina dispersion strengthened copper(ADSC) alloy was produced by internal oxidation. The hardness, ultimate tensile strength and electrical conductivity measurements and microstructure observation on the produced 0.12%ADSC (0.24% Al2O3, mass fraction) and 0.25%ADSC (0.50% Al2O3) subjected to different annealing treatments were conducted. The results show that the microstructure of the produced ADSC is characterized by an uniform distribution of nano-Al2O3 particles in Cu-matrix; the particles range in size from 20 to 50 nm with an interparticle spacing of 30100 nm. The produced 0.12%ADSC can maintain more than 87% hardness retention after 900 ℃, 1 h annealing treatment; the recrystallization can be largely retarded and is not fully completed even after annealing at 1 000 ℃ for 1 h, followed by cold deformation of 84%; local grain growth can be observed after 1 050 ℃, 1 h annealing treatment. The results also show that increasing either the alumina content or cold deformation degree increases the hardness of the produced ADSC.
文摘Large quantities of sludge are produced during water treatment processes. Recently, sludge has been treated as waste and disposed of in landfills, which increases the environmental burdens and the operational cost. Therefore, sludge reuse has become a significant environmental issue. In this study, adsorption of copper ions (Cu^2+) onto calcined sludge was investigated under various operational conditions (with varying temperature, Cu^2+ initial concentration, pH, and sludge dosage). The prepared sludge material was characterized with transmission electron microscopy (TEM), X-ray diffraction (XRD), dynamic light scattering (DLS), and Brunauer-Emmett-Teller (BET) surface area. The sorption capacity of sludge was directly proportional to the initial Cu^2+ concentration and inversely proportional to the sludge dosage. The optimum operational pH and solution temperature were 6.6 and 80℃, respectively. The experimental results followed a Langmuir isotherm and pseudo-first-order adsorption kinetics. Thermodynamic parameters such as activation energy, change in free energy, enthalpy, and entropy were calculated. Thermodynamic analyses indicated that the sorption of copper ions onto the calcined sludge was driven by a physical adsorption process. The prepared sludge was proven to be an excellent adsorbent material for the removal of Cu^2+ from an aqueous solution under optimum conditions.
文摘With the means of electron backscattered diffraction(EBSD),mechanical properties test and digital eddy current metal conductivity,the single crystal copper cold-welded joint was tested and analyzed,the structure change of cold-welded joint and the effect of heat treating on the structure and property of cold-welded joint were discussed.The results show that:The deformation area of the single crystal copper cold welded joint is broken,the crystalline grain at the interface of the joint is refined,and the single crystal structure is still maintained in the base metal area.The hardness of the deformation area increases greatly,the conductivity of the joint does not change much,and the tensile strength of the joint reaches about 70%of that of the base metal.At the interface of the heat treating joint,the single crystal structure of the deformation area and the base metal area are destroyed,and the grains grow up at the interface and the orientation is different.The hardness of the joint interface is much lower than that of the non-heat treating joint,the electrical conductivity of the joint is good,and the tensile strength of the joint is higher than that of the base metal.
文摘The effect of prior-heat treatments at 500℃, 600℃ and 700℃ on the creep behavior of an industrial drawn copper has been studied under constant stresses (98, 108 and 118 MPa) and temperatures (290℃ and 340℃). The results revealed that the creep behavior and the creep life of the material depend strongly on these prior-heat treatments. The apparent activation energy Qc for different creep tests of a drawn copper wire was calculated. The fracture mechanism of the material is characterized using optical microscopy.
文摘It is known that one of the causes of pitting corrosion of copper tubes is residual carbon on the inner surface. It was confirmed that type I” pitting corrosion of the copper tube is suppressed by keeping the residual carbon amount at 2 mg/m<sup>2</sup> or less, which is lower than that of the type I’ pitting corrosion, or by removing the fine particles that are the corrosion product of galvanized steel pipes. The developed water treatment chemical was evaluated using three types of copper tubes with residual carbon amounts of 0 mg/m<sup>2</sup>, 0.5 mg/m<sup>2</sup>, and 6.1 mg/m<sup>2</sup>. The evaluation was conducted for three months in an open-circulation cooling water system and compared with the current water treatment chemical. Under the current water treatment chemical conditions, only the copper tube with a residual carbon amount of 6.1 mg/m<sup>2</sup> showed a significant increase in the natural corrosion potential after two weeks, and pitting corrosion occurred. No pitting corrosion and no increase in the natural corrosion potential were observed in any of the copper tubes that were treated with the developed water treatment chemical. In addition, the polarization curve was measured using the cooling water from this field test, and the anodic polarization of two cooling waters was compared. For copper tubes with a large amount of residual carbon, the current density near 0 mV vs. Ag/AgCl electrode (SSE) increased when the developed water treatment chemical was added.
文摘Acid mine drainage (AMD) with high concentrations of sulfates and metals is generated by the oxidation of sulfide beating wastes. CaCO3-rich marble cutting waste is a residual material produced by the cutting and polishing of marble stone. In this study, the feasibility of using the marble cutting waste as an acid-neutralizing agent to inhibit AMD and immobilize heavy metals from copper flotation tailings (sul- fide-beating wastes) was investigated. Continuous-stirring shake-flask tests were conducted for 40 d, and the pH value, sulfate content, and dissolved metal content of the leachate were analyzed every 10 d to determine the effectiveness of the marble cutting waste as an acid neu- tralizer. For comparison, CaCO3 was also used as a neutralizing agent. The average pH value of the leachate was 2.1 at the beginning of the experiment (t = 0). In the experiment employing the marble cutting waste, the pH value of the leachate changed from 6.5 to 7.8, and the sul- fate and iron concentrations decreased from 4558 to 838 mg/L and from 536 to 0.01 mg/L, respectively, after 40 d. The marble cutting waste also removed more than 80wt% of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) from AMD generated by copper flotation tailings.
文摘The bioleaching of copper sulphide minerals was investigated by using A. ferrooxidans ATF6. The result shows the preferential order of the minerals bioleaching as djurleite〉bomite〉pyritic chalcopyrite〉covellite〉porphyry chalcopyfite. The residues were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is indicated that jarosite may not be responsible for hindered disso- lution. The elemental sulfur layer on the surface of pyritic chalcopyrite residues is cracked. The compact surface layer of porphyry chalcopy- rite may strongly hinder copper extraction. X-ray photoelectron spectroscopy (XPS) further confirms that the passivation layers of covellite, pyritic chalcopyrite, and porphyry chalcopyrite are copper-depleted sulphide Cu4S11, S8, and copper-rich iron-deficient polysulphide CtuFe2S9, resoectivelv. The ability of these oassivation layers was found as Cu4Fe2S9〉Cu4S11〉S8〉iarosite.
基金the support of Research & Development Division of Sarcheshmeh Copper Complex (Kerman/ Iran) and Tarbiat Modares University(Tehran/ Iran)
文摘The kinetics of the chemical leaching of copper from low grade ore in ferric sulfate media was investigated using the constrained least square optimization technique. The experiments were carried out for different particle sizes in both the reactor and column at constant oxidation-reduction potential (Eh), pH values, and temperature. The main copper mineral was chalcopyrite. About 40% of Cu recovery is obtained after 7 d of reactor leaching at 85℃ using -0.5 mm size fraction, while the same recovery is obtained at 75℃ after 24 d. Also, about 23% of Cu recovery is obtained after 60 d of column leaching for +4--8 mm size fraction whereas the Cu recovery is as low as about 15% for +8--12.7 and +12.7--25 mm size fractions. A 4-stage model for chalcopyrite dissolution was used to explain the observed dissolution behaviors. The results show that thick over-layers of sulphur components cause the parabolic behavior of chalcopyrite dissolution and the precipitation of Fe3+ plays the main role in chalcopyrite passivation. In the case of coarse particles, transformation from one stage to another takes a longer time, thus only two stages including the initial reaction on fresh surfaces and S0 deposition are observed.
文摘Permeation of Cu(Ⅱ) from its aqueous solution through a supported liquid membrane (SLM) containing di(2-ethylhexyl)phosphoric acid (D2EHPA) carrier dissolved in coconut oil has been studied. The effects of Cu(Ⅱ), pH (in feed), H2SO4 (stripping) and D2EHPA (in membrane) concentrations have been investigated. The stability of the D2EHPA-coconut oil has also been evaluated. High Cu(Ⅱ) concentration in the feed leads to an increase in flux from 4.1 × 10^-9 to 8.9 × 10^-9 mol/(m^2·s) within the Cu(Ⅱ) concentration range 7.8×10^-4-78.6×10^-4 mol/L at pH of 4.0 in the feed and 12.4 × 10^-4 mol/L D2EHPA in the membrane phase. Increase in H2SO4 concentration in strip solution leads to an increase in copper ions flux up to 0.25 mol/L H2SO4, providing a maximum flux of 7.4 × 10^-9 mol/(m^2·s). The optimum conditions for Cu(Ⅱ) transport are, pH of feed 4.0, 0.25 mol/L H2SO4 in strip phase and 12.4 × 10^-4 mol/L D2EHPA (membrane) in 0.5 μm pore size polytetrafluoroethylene (PTFE) membrane. It has been observed that Cu(Ⅱ) flux across the membrane tends to increase with the concentration of copper ions. Application of the method developed to copper plating bath rinse solutions has been found to be successful in the recovery of Cu(Ⅱ).
文摘The enrichment of copper from copper–cyanide wastewater by solvent extraction was investigated using a quaternary ammonium salt as an extractant. The influences of important parameters, e.g., organic-phase components, aqueous pH values, temperature, inorganic anion impurities, CN/Cu molar ratio, and stripping reagents, were examined systematically, and the optimal conditions were determined. The results indicated that copper was effectively concentrated from low-concentration solutions using Aliquat 336 and that the extraction efficiency increased linearly with increasing temperature. The aqueous pH value and concentrations of inorganic anion impurities only weakly affected the extraction process when varied in appropriate ranges. The CN/Cu molar ratio affected the extraction efficiency by changing the distribution of copper–cyanide complexes. The difference in gold leaching efficiency between using raffinate and fresh water was negligible.
基金the Danish National Research Foundation (Grant No. DNRF86-5)the National Natural Science Foundation of China (Grant Nos. 51261130091 and 51171085) to the Danish–Chinese Center for Nanometals
文摘The effects of applied normal stress, surface roughness, and initial grain size on the microstructure of pure Cu developed during platen friction sliding deformation (PFSD) processing were investigated. In each case, the deformation microstructure was characterized and the hardness of the treated surface layer was measured to evaluate its strength. The results indicated that the thickness of the deformed layer and the hardness at any depth increased with increasing normal stress. A smaller steel platen surface roughness resulted in less microstruc- tural refinement, whereas the microstructural refinement was enhanced by decreasing the surface roughness of the Cu sample. In the case of a very large initial grain size (d 〉 10 mm), a sharper transition from fine-grain microstructure to undeformed material was obtained in the treated surface layer after PFSD processing.
基金partly supported by National Natural Science Foundation of China under Grant No. 51477164the National Basic Research Program of China under Grant No. 2014CB239505-03+1 种基金the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources under Grant No. LAPS16013the Science and Technology Project of State Grid Corporation of China
文摘Nanosecond-pulse diffuse discharges could provide high-density plasma and high-energy electrons at atmospheric pressure. In this paper, the surface treatment of Cu by nanosecond-pulse diffuse discharges is conducted in atmospheric air. Factors influencing the water contact angle (WCA), chemical composition and microhardness, such as the gap spacing and treatment time, are investigated. The results show that after the plasma surface treatment, the WCA considerably decreases from 87~ to 42.3~, and the surface energy increases from 20.46 mJ m-2 to 66.28 mJ m-2. Results of energy dispersive x-ray analysis show that the concentration of carbon decreases, but the concentrations of oxygen and nitrogen increase significantly. Moreover, the microhardness increases by approximately 30% after the plasma treatment. The aforementioned changes on the Cu surface indicate the plasma surface treatment enhances the hydrophilicity and microhardness, and it cleans the carbon and achieves oxidization on the Cu surface. Furthermore, by increasing the gap spacing and treatment time, better treatment effects can be obtained. The micmhardness in the case of a 2.5 cm gap is higher than that in the case of a 3 cm gap. More oxygen and nitrogen species appear on the Cu surface for the 2.5 cm gap treatment than for the 3 cm gap treatment. The WCA significantly decreases with the treatment thne when it is no longer than 90 s, and then it reaches saturation. In addition, more oxygen-containing and nitrogen-containing groups appear after extended plasma treatment time. They contribute to the improvement of the hydrophilicity and oxidation on the Cu surface.
文摘Bioleaching is an environmentally friendly method for extraction of metal from ores. In this study, bioleaching of copper oxide ore by Pseudomonas aeruginosa was investigated. Pseudomonas aeruginosa is a heterotrophic bactermm that can produce various organic acids in an appropriate culture medium, and these acids can operate as leaching agents. The parameters, such as particle size, glucose percentage in the culture medium, bioleaching time, and solid/liquid ratio were optimized. Optimum bioleaching conditions were found as follows: particle size of 150-177 μm, glucose percentage of 6%, bioleaching time of 8 d, and solid/liquid ratio of 1:80. Under these conditions, 53% of copper was extracted.
基金financially supported by the National Natural Science Foundation of China(Grant No.40573045).
文摘Treatment with metallic copper for the removal of elemental sulfur from bitumen extracted from sedimentary rocks or petroleum is the most widely used method. Little attention has been paid, however, to its disadvantages. It was observed that copper can interact with some polar organic substances during conventional sulfur removal, which can strongly influence the quantitative and qualitative determination of bitumen, as has been confirmed by interaction of long-chain fatty acids with copper. The copper soap generated was analyzed by element analysis, inductively coupled plasma optical emission spectrometry (ICP-OES), thermal analysis (TG-DSC) and Fourier Transform Infrared spectroscopy (FTIR). Mechanism of the interaction was investigated and elucidated. Our experimental results would necessitate improvement of the present method for sulfur removal and/or a search for a new one.
基金This project is supported by Nature Science Foundation of Shanxi Province ( No. 2009011028-2) , Talent Star Special Foundation of Taiyuan (No. 09121013 ), College Students Innovation Foundation of Shanxi Province( No. UIT20090065 ).
文摘Cr-Zr-Cu alloy electrodes for resistance spot welding of aluminium alloy are treated by deep cryogenic treatment processes. The Cr-Zr-Cu alloy electrodes are analyzed by transmission electron microscope( TEM ) , and results show that the common dislocation in Cr-Zr-Cu alloy electrodes is changed into the dislocation loop, and twin crystal is found after deep cryogenic treatment. The parallel twin crystal band is observed by selected electron diffraction(SED) and the twin crystal plane is marked as ( 111 ). The Cr-Zr-Cu alloy electrode is studied by X-ray diffraction( XRD ) and results show that the intensity of diffraction peak is obviously changed after deep cryogenic treatment, and the grain rotates to preferred orientation. The Cr-Zr- Cu alloy electrode is studied by positron annihilation technique (PAT) and results indicate that the amount of vacancy defects is less than that of Cr-Zr-Cu alloy before deep cryogenic treatment. The main elements in Cr-Zr-Cu alloy are studied with X- ray photoelctron spectroscopy( XPS ) and the intensity of spectrum peak is increased after deep cryogenic treatment.
文摘Cu-Ni-Al alloys at different concentrations were obtained using a high frequency induction melting unit, keeping a balance in the nominal compositions. Light alloys are important to be used in industrial applications. Aluminum additions result in a positive hardness increment of the ternary alloys in comparison with the binary Cu-Ni alloys. Generalized wear mechanisms of the alloys with low aluminum content are basically type abrasive, while samples with 5 and 10 at.% Al present an oxidative-adhesive wear mechanism. Wear results have indicated that aluminum addition affects positively the wear resistance, mainly in samples with high aluminum content product of the creation during the test of different oxides corresponding to the elements present in the alloys.
基金the FANEDD of China (No. 200352)the Fok Ying Tong Education Foundation (No. 101028) for financial support
文摘In order to improve the leaching resistance of active ingredient-copper in ammoniacal copper quat-type D (ACQ-D) treated Chinese fir (Cunninghamia lanceolata Hook.), microwave post-treatments were carried out. The percentages of leached copper from ACQ-D treated Chinese fir with different microwave post-treatments were obtained after leaching tests by analyzing the copper retention in treated wood. The fixation mechanism of copper in the treated wood was determined with the help of SEM and FTIR spectra, while the valence conversion of copper after microwave post-treatments was studied by UV spectroscopy. Our experimental results show that the percentage of leached copper was reduced significantly after microwave post-treatment over time. This development was reinforced by allowing even more time for the treatment as well as with an increase in the power of microwave post-treatment. The leaching resistance of copper in wrapped samples was better than that in unwrapped samples, which is attributed to the combined effects of temperature and moisture content. Compared with air-dried samples, the valence conversion in the samples with microwave post-treatments changed slightly, which demonstrates that microwave post-treatments cannot impair the natural decay resistance of ACQ-D treated wood. SEM and FTIR spectra showed the presence of crystal particles formed by chemical reactions between copper and wood ingredients in wood cell walls and wood pits. Only a small amount of copper reacted with cellulose, while lignin and hemicellulose were the major bonding sites for copper in wood. Given the experimental results of mechanical properties, microwave post-treatments had a slight effect on the compression strength parallel to the grain and on the erystallinity of ACQ-D treated Chinese fir.