期刊文献+
共找到151篇文章
< 1 2 8 >
每页显示 20 50 100
Effect of graphite powder as a forming filler on the mechanical properties of SiCp/Al composites by pressure infiltration 被引量:2
1
作者 Wei Cui Hui Xu +3 位作者 Jian-hao Chen Shu-bin Ren Xin-bo He Xuan-hui Qu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第5期601-607,共7页
(38vo1% SiCp + 2vo1% A1203f)/2024 A1 composites were fabricated by pressure infiltration. Graphite powder was introduced as a forming filler in preform preparation, and the effects of the powder size on the microst... (38vo1% SiCp + 2vo1% A1203f)/2024 A1 composites were fabricated by pressure infiltration. Graphite powder was introduced as a forming filler in preform preparation, and the effects of the powder size on the microstructures and mechanical properties of the final com- posites were investigated. The results showed that the composite with 15 μm graphite powder as a forming filler had the maximum tensile strength of 506 MPa, maximum yield strength of 489 MPa, and maximum elongation of 1.2%, which decreased to 490 MPa, 430 MPa, and 0.4%, respectively, on increasing the graphite powder size from 15 to 60 μm. The composite with 60 μm graphite powder showed the highest elastic modulus, and the value decreased from 129 to 113 GPa on decreasing the graphite powder size from 60 to 15 μm. The differences between these properties are related to the different microstructures of the corresponding composites, which determine their failure modes. 展开更多
关键词 metal matrix composites ALUMINUM silicon carbide graphite preparation pressure infiltration mechanical properties
下载PDF
Sintering behavior and thermal conductivity of nickel-coated graphite flake/copper composites fabricated by spark plasma sintering 被引量:1
2
作者 Hui Xu Jian-hao Chen +2 位作者 Shu-bin Ren Xin-bo He Xuan-hui Qu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第4期459-471,共13页
Nickel-coated graphite flakes/copper(GN/Cu) composites were fabricated by spark plasma sintering with the surface of graphite flakes(GFs) being modified by Ni–P electroless plating. The effects of the phase trans... Nickel-coated graphite flakes/copper(GN/Cu) composites were fabricated by spark plasma sintering with the surface of graphite flakes(GFs) being modified by Ni–P electroless plating. The effects of the phase transition of the amorphous Ni–P plating and of Ni diffusion into the Cu matrix on the densification behavior, interfacial microstructure, and thermal conductivity(TC) of the GN/Cu composites were systematically investigated. The introduction of Ni–P electroless plating efficiently reduced the densification temperature of uncoated GF/Cu composites from 850 to 650℃ and slightly increased the TC of the X–Y basal plane of the GF/Cu composites with 20 vol%–30 vol% graphite flakes. However, when the graphite flake content was greater than 30 vol%, the TC of the GF/Cu composites decreased with the introduction of Ni–P plating as a result of the combined effect of the improved heat-transfer interface with the transition layer, P generated at the interface, and the diffusion of Ni into the matrix. Given the effect of the Ni content on the TC of the Cu matrix and on the interface thermal resistance, a modified effective medium approximation model was used to predict the TC of the prepared GF/Cu composites. 展开更多
关键词 copper matrix composites graphite flake nickel-phosphorus transition layer sintering behavior thermal conductivity
下载PDF
Microstructures and wear properties of graphite and Al_2O_3 reinforced AZ91D-Cex composites 被引量:1
3
作者 张美娟 曹占义 +1 位作者 杨晓红 刘勇兵 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第B07期471-475,共5页
The magnesium matrix composites reinforced by graphite particles and Al2O3 short fibers were fabricated by squeeze-infiltration technique.The additions dispersed uniformly and no agglomeration and casting defect were ... The magnesium matrix composites reinforced by graphite particles and Al2O3 short fibers were fabricated by squeeze-infiltration technique.The additions dispersed uniformly and no agglomeration and casting defect were observed.The microstructures and wear properties of the composites with different Ce contents of 0,0.4%,0.8%and 1.0%,respectively,were investigated.Especially,the effect of Ce on the properties was discussed.The results reveal that Ce enriches around the boundaries of graphite particles and forms Al3Ce phase with Al.The addition of Ce refines the microstructures of the composites.With the increase of Ce content,the grain size becomes smaller and the wear resistance of the composite is improved.At low load,the composites have similar worn surface.At high load,the composite with 1.0%Ce has the best wear resistance due to the existence of Al3Ce phase.The Al3Ce phase improves the thermal stability of the matrix so the graphite particles can keep intact,which can still work as lubricant. At low load,the wear mechanism is abrasive wear and oxidation wear.At high load,the wear mechanism changes to delamination wear for all the composites. 展开更多
关键词 magnesium matrix composite graphite Ce wear property
下载PDF
Microstructures and properties of graphite and Al2O3 short fibers reinforced Mg-Al-Zn alloy hybrid composites 被引量:2
4
作者 杨晓红 刘勇兵 +1 位作者 宋起飞 安健 《中国有色金属学会会刊:英文版》 CSCD 2006年第A02期1-5,共5页
关键词 金属复合材料 Mg-Al-Zn合金 AL2O3短纤维 石墨 显微结构 力学性质
下载PDF
In-situ grown continuous graphene network enhances the electrical conductivity and tribological properties of copper matrix composites
5
作者 Liangliang Zeng Yilong Liang Peng Chen 《Frontiers of Materials Science》 CSCD 2024年第4期175-190,共16页
Copper has good electrical conductivity but poor mechanical and wear-resistant properties.To enhance the mechanical and wear-resistant properties of the copper matrix,a strategy of in-situ generation of graphene was a... Copper has good electrical conductivity but poor mechanical and wear-resistant properties.To enhance the mechanical and wear-resistant properties of the copper matrix,a strategy of in-situ generation of graphene was adopted.Through ball-milling processes,a carbon source and submicron spherical copper were uniformly dispersed in a dendritic copper.Then,a uniform and continuous graphene network was generated in-situ in the copper matrix during the vacuum hot-pressing sintering process to improve the performance of composites.The graphene product exhibited lubrication effect and provided channels for electrons to move through the interface,improving the wear resistance and the electrical conductivity of composites.When the graphene content in the composite material was 0.100 wt.%,the friction coefficient and the wear rate were 0.36 and 6.36×10^(-6)mm^(3)·N^(-1)·m^(-1),diminished by 52%and reduced 5.11 times those of pure copper,respectively,while the electrical conductivity rose to 94.57% IACS and the hardness was enhanced by 47.8%.Therefore,this method provides a new approach for the preparation of highly conductive and wear-resistant copper matrix composite materials. 展开更多
关键词 in-situ synthesis method copper matrix composite GRAPHENE tribological property
原文传递
Cooperative enhancement of mechanical and tribological properties through tailoring TiN transition interface in boron nitride nanosheets reinforced copper composites
6
作者 Zhong-Hua Li Liang Liu +5 位作者 Xin You Jian-Hong Yi Rui Bao Ming-Yi Zhu Song Lu Jun-Jun Pai 《Rare Metals》 SCIE EI CAS CSCD 2024年第10期5202-5215,共14页
Strengthening interface bonding between boron nitride nanosheets(BNNS)and copper matrix is an essential prerequisite for exploiting a new generation of copper matrix composites(CMCs)with high strength and wear resista... Strengthening interface bonding between boron nitride nanosheets(BNNS)and copper matrix is an essential prerequisite for exploiting a new generation of copper matrix composites(CMCs)with high strength and wear resistance.Herein,BNNS/Cu composites were fabricated by the powder metallurgy route,matrix-alloying(adding 1.0 wt%Ti)strategy was adopted to improve the interfacial wettability and strengthen interface adhesion.A typical"sandwich"-like multiply interface structure involving TiN transition layers,BNNS and Cu matrix had been well constructed through the rational heat treatment(900℃ for 120 min).Additionally,nano-sized TiB whisker was in situ formed in the vicinity of the interface,it had linked the BNNS-Cu-TiN multiply interface,which played a role of"threading the needle"and significantly strengthened the multi-interfaces bonding.This specific interface structure was finely characterized,and the formation mechanism of solid-state interfacial reaction feature was proposed.The results demonstrated that the ultimate tensile strength(UTS)of BNNS/Cu-(Ti)-900℃ increased from 248 to 530 MPa(increased by 114%),and the coefficient of friction(COF)decreased from 0.51 to 0.28 than pure Cu.This work highlights the importance of interface configuration design,which contributes to the development of CMCs with prominent comprehensive properties. 展开更多
关键词 copper matrix composites Boron nitride nanosheets Interface structure Mechanical and frictional properties
原文传递
Effect of aluminum borate whisker coating on interface and mechanical properties of 6061Al matrix composites 被引量:2
7
作者 GAO Haiqi,WANG Lidong and FEI Weidong School of Materials Science & Engineering,Harbin Institute of Technology,Harbin 150001,China 《Rare Metals》 SCIE EI CAS CSCD 2007年第S1期41-45,共5页
Copper coating was deposited on the surface of aluminum borate whisker by an electroless plating method.This method was used to modify the interfacial property of squeeze-casting aluminum borate whisker reinforced 606... Copper coating was deposited on the surface of aluminum borate whisker by an electroless plating method.This method was used to modify the interfacial property of squeeze-casting aluminum borate whisker reinforced 6061Al matrix composite.Interface observation indicates that the spinel reaction(MgAl2O4) is hindered by the copper coating,and the difference in interfacial reaction degree affects the tensile property and aging behavior of the composite.For the composite with less spinel reaction(MgAl2O4),its peak-aging process are postponed due to less depletion of magnesium.On the fracture surface of copper-coated composite dimples and fractures of whiskers are more,but on the fracture surface of uncoated composite pull-out of whiskers are more than that on the coated one.In uncoated composite the fracture generally originates from the near-interface-region. 展开更多
关键词 aluminum borate whisker aluminum matrix composite copper coating interfacial reaction mechanical property
下载PDF
Tribological properties of copper matrix composites reinforced with homogeneously dispersed graphene nanosheets 被引量:11
8
作者 Xin Gao Hongyan Yue +5 位作者 Erjun Guo Shaolin Zhang Longhui Yao Xuanyu Lin Bao Wang Enhao Guan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第10期1925-1931,共7页
Graphene reinforced copper matrix composites (Gr/Cu) were fabricated by electrostatic self-assembly and powder metallurgy. The morphology and structure of graphene oxide, graphene oxide-Cu powders and Gr/Cu composit... Graphene reinforced copper matrix composites (Gr/Cu) were fabricated by electrostatic self-assembly and powder metallurgy. The morphology and structure of graphene oxide, graphene oxide-Cu powders and Gr/Cu composites were characterized by scanning electronic microscopy, transmission electronic microscopy, X-ray diffraction and Raman spectroscopy, respectively. The effects of graphene contents, applied loads and sliding speeds on the tribological behavior of the composites were investigated. The results indicate that the coefficient of friction of the composites decreases first and then increases with increasing the graphene content. The lowest friction coefficient is achieved in 0.3 wt~ Gr/Cu composite, which decreases by 65% compared to that of pure copper. The coefficient of friction of the composite does not have significant change with increasing the applied load, however, it increases with increasing the sliding speed. The tribological mechanisms of the composite under different conditions were also investigated. 展开更多
关键词 Graphene nanosheets copper matrix composites Tribological properties MICROSTRUCTURE
原文传递
Influence of nano-Al_2O_3-reinforced oxide-dispersion-strengthened Cu on the mechanical and tribological properties of Cu-based composites 被引量:4
9
作者 Xiang Zhao Lei-chen Guo +7 位作者 Long Zhang Ting-ting Jia Cun-guang Chen Jun-jie Hao Hui-ping Shao Zhi-meng Guo Ji Luo Jun-bin Sun 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第12期1444-1451,共8页
The mechanical and tribological properties of Cu-based powder metallurgy (P/M) friction composites containing 10wt%-50wt% oxide-dispersion-strengthened (ODS) Cu reinforced with nano-Al2O3 were investigated. Additi... The mechanical and tribological properties of Cu-based powder metallurgy (P/M) friction composites containing 10wt%-50wt% oxide-dispersion-strengthened (ODS) Cu reinforced with nano-Al2O3 were investigated. Additionally, the friction and wear behaviors as well as the wear mechanism of the Cu-based composites were characterized by scanning electron microscopy (SEM) in conjunction with energy-dispersive X-ray spectroscopy (EDS) elemental mapping. The results indicated that the Cu-based friction composite containing 30wt% ODS Cu exhibited the highest hardness and shear strength. The average and instantaneous friction coefficient curves of this sample, when operated in a high-speed train at a speed of 300 km/h, were similar to those of a commercial disc brake pad produced by Knorr-Bremse AG (Germany). Additionally, the lowest linear wear loss of the obtained samples was (0.008 ± 0.001) mm per time per face, which is much lower than that of the Knorr-Bremse pad ((0.01 ± 0.001) mm). The excellent performance of the developed pad is a consequence of the formation of a dense oxide composite layer and its close combination with the pad body. 展开更多
关键词 metal matrix composites oxide dispersion strengthening copper NANOPARTICLES microstructure mechanical properties tribological properties
下载PDF
A review of processing of Cu/C base plate composites for interfacial control and improved properties 被引量:3
10
作者 Jean-François Silvain Jean-Marc Heintz +2 位作者 Amélie Veillere Loic Constantin Yong Feng Lu 《International Journal of Extreme Manufacturing》 2020年第1期25-45,共21页
The increase in both power and packing densities in power electronic devices has led to an increase in the market demand for effective heat-dissipating materials with a high thermal conductivity and thermal expansion ... The increase in both power and packing densities in power electronic devices has led to an increase in the market demand for effective heat-dissipating materials with a high thermal conductivity and thermal expansion coefficient compatible with chip materials while still ensuring the reliability of the power modules.Metal matrix composites,especially copper matrix composites,containing carbon fibers,carbon nanofibers,or diamond are considered very promising as the next generation of thermalmanagement materials in power electronic packages.These composites exhibit enhanced thermal properties,as compared to pure copper,combined with lower density.This paper presents powder metallurgy and hot uniaxial pressing fabrication techniques for copper/carbon composite materials which promise to be efficient heat-dissipation materials for power electronic modules.Thermal analyses clearly indicate that interfacial treatments are required in these composites to achieve high thermal and thermomechanical properties.Control of interfaces(through a novel reinforcement surface treatment,the addition of a carbide-forming element inside the copper powders,and processing methods),when selected carefully and processed properly,will form the right chemical/mechanical bonding between copper and carbon,enhancing all of the desired thermal and thermomechanical properties while minimizing the deleterious effects.This paper outlines a variety of methods and interfacial materials that achieve these goals. 展开更多
关键词 metal matrix composite physical properties interface/interphase copper carbon reinforcement
下载PDF
Significant strengthening of copper-based composites using boron nitride nanotubes 被引量:2
11
作者 Naiqi Chen Quan Li +4 位作者 Youcao Ma Kunming Yang Jian Song Yue Liu Tongxiang Fan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第9期1764-1778,共15页
Nanotubes, such as boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs), exhibit excellent mechanical properties. In this work, high-quality BNNTs were synthesized by ball milling and annealing. Subsequently, w... Nanotubes, such as boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs), exhibit excellent mechanical properties. In this work, high-quality BNNTs were synthesized by ball milling and annealing. Subsequently, well-dispersed 3vol%BNNTs/Cu and 3vol%CNTs/Cu composites were successfully prepared using ball milling, spark plasma sintering, and followed by hot-rolling. Moreover, the mechanical properties and strengthening mechanisms of BNNTs/Cu and CNTs/Cu composites were compared and discussed in details. At 293 K,both BNNTs/Cu and CNTs/Cu composites exhibited similar ultimate tensile strength (UTS) of~404 MPa, which is approximately 170%higher than pure Cu. However, at 873 K, the UTS and yield strength of BNNTs/Cu are 27%and 29%higher than those of CNTs/Cu, respectively.This difference can be attributed to the stronger inter-walls shear resistance, higher thermomechanical stability of BNNTs, and stronger bonding at the BNNTs/Cu interface as compared to the CNTs/Cu interface. These findings provide valuable insights into the potential of BNNTs as an excellent reinforcement for metal matrix composites, particularly at high temperature. 展开更多
关键词 boron nitride nanotubes copper matrix composites excellent mechanical property strengthening mechanism
下载PDF
Microstructure and mechanical properties of 2D woven Gr_f/Al composite 被引量:3
12
作者 张云鹤 武高辉 +3 位作者 陈国钦 修子扬 张强 王春雨 《中国有色金属学会会刊:英文版》 CSCD 2006年第A03期1509-1512,共4页
A 2D woven graphite fibers reinforced aluminum matrix composite with 50%Grf (volume fraction) was fabricated by the squeeze-casting technology, and its microstructure and mechanical properties were investigated. The r... A 2D woven graphite fibers reinforced aluminum matrix composite with 50%Grf (volume fraction) was fabricated by the squeeze-casting technology, and its microstructure and mechanical properties were investigated. The results show that the composite is dense, the graphite fibers are distributed uniformly in the composite. TEM observation indicates the bonding between fiber and matrix is good and little interfacial reaction is found in the Grf/Al composite. This is attributed to the better stability of graphite fiber and the fabrication process minimizing the contact time between fiber with matrix at high temperatures. The 2D woven Grf/Al composite exhibites better mechanical properties with tensile strength, bending strength and elastic modulus of 366.2, 519.7 and 110.7 GPa, respectively. SEM images suggeste that the fracture is irregular and some pulled-out fibers are found, which indicats that the high strength of fiber is not degraded. 展开更多
关键词 铝合金 金属化合物 机械性能 石墨 纤维
下载PDF
Effect of graphite particle size on wear property of graphite and Al_2O_3 reinforced AZ91D-0.8%Ce composites 被引量:1
13
作者 张美娟 刘勇兵 +2 位作者 杨晓红 安健 罗克帅 《中国有色金属学会会刊:英文版》 CSCD 2008年第A01期273-277,共5页
The graphite particles and Al_2O_3 short fibers reinforced AZ91D-0.8%Ce composites were fabricated by squeeze-infiltration technique.The researches about the effects of different graphite particle sizes on the microst... The graphite particles and Al_2O_3 short fibers reinforced AZ91D-0.8%Ce composites were fabricated by squeeze-infiltration technique.The researches about the effects of different graphite particle sizes on the microstructure and wear property of the composites were performed under the condition of constant contents of graphite particles and Al_2O_3 short fibers.The results reveal that the grain size of the composites changes less when the graphite particle size descends.Moreover,Ce enriches around the graphite particle and Al_2O_3 short fibers and forms Al_3Ce phase with A1 element.The graphite that works as lubricant decreases the wear loss.The wear resistance of the composites increases as the graphite particle size increases.At low load the composites have similar wear loss;at high load the composite with the largest graphite particle size has the best wear resistance.The wear mechanism of all the composites at low load is abrasive wear and oxidation wear;at high load,except the composites with the particle size of 240μm whose wear mechanism is still abrasive wear and oxidation wear,the wear mechanism of others changes to delamination wear. 展开更多
关键词 AZ91D镁合金 AL2O3 金属材料 磨擦磨损性能
下载PDF
Influence of Mg Addition on Graphite Particle Distribution in the Al Alloy Matrix Composites 被引量:1
14
作者 Zhengang Liu,Guoyin Zu,Hongjie Luo,Yihan Liu and Guangchun Yao School of Materials & Metallurgy,Northeastern University,Shenyang 110004,China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2010年第3期244-250,共7页
Al alloy matrix composites reinforced with copper-coated graphite particle have been prepared by melt stirring process in this work.The effect of the addition of Mg on distribution of the graphite particles has been i... Al alloy matrix composites reinforced with copper-coated graphite particle have been prepared by melt stirring process in this work.The effect of the addition of Mg on distribution of the graphite particles has been investigated.Scanning electron microscopy (SEM) was used to observe the micro-morphology of Al alloy matrix composites reinforced with graphite particles.Meanwhile,the content of graphite was analyzed in the different position of casting by dissolution method and the mechanical properties of the composites were detected.The results show that the content of graphite increase with increasing Mg content;the graphite particles distribute uniformly in the particle reinforced metal matrix composites (PMMC) with 0.6 wt pct Mg;however,the agglomeration of the graphite particles is observed obviously in the matrix when Mg content is more than 1.0 wt pct.In addition,the proper Mg addition amount is beneficial to enhance the mechanical properties of the graphite particles reinforced Al alloy matrix composites and the abrasion resistance of the materials due to a reduce friction coefficient. 展开更多
关键词 graphite particles Al alloy matrix composites DISTRIBUTION MAGNESIUM Mechanical properties
原文传递
Comparison of optical properties of Cu-Al_2O_3 and Ag-Al_2O_3 nano-array composite structure 被引量:1
15
作者 唐恒敬 吴福全 +1 位作者 魏玉花 李清山 《Chinese Optics Letters》 SCIE EI CAS CSCD 2005年第12期722-724,共3页
Cu-Al2O3 (Ag-Al2O3) nano-array composite structures were obtained by alternating current (AC) electrodeposition Cu (Ag) into the pores of anodic alumina. Their transmitted spectra and polarized properties were i... Cu-Al2O3 (Ag-Al2O3) nano-array composite structures were obtained by alternating current (AC) electrodeposition Cu (Ag) into the pores of anodic alumina. Their transmitted spectra and polarized properties were investigated in detail. Experimental results indicate that the transmittance of Cu-Al2O3 is superior to that of Ag-Al2O3 in visible and infrared wavebands, and the extinction ratio is better than that of Ag-Al2O3 in near infrared waveband. 展开更多
关键词 composite structures copper ELECTRODEPOSITION Nanostructured materials Optical devices Optical properties Polarization Porous materials Refractive index silver Substrates
原文传递
Microstructure and Mechanical Performance of Cu-SnO_2-rGO based Composites Prepared by Plasma Activated Sintering 被引量:2
16
作者 罗国强 HUANG Jing +4 位作者 JIN Zhipeng LI Meijuan JIANG Xiaojuan SHEN Qiang ZHANG Lianmeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第6期1152-1158,共7页
A novel chemical technique combined with unique plasma activated sintering(PAS) was utilized to prepare consolidated copper matrix composites(CMCs) by adding Cu-SnO2-rGO layered micro powders as reinforced fillers... A novel chemical technique combined with unique plasma activated sintering(PAS) was utilized to prepare consolidated copper matrix composites(CMCs) by adding Cu-SnO2-rGO layered micro powders as reinforced fillers into Cu matrix. The repeating Cu-SnO2-rGO structure was composed of inner dispersed reduced graphene oxide(r GO), SnO2 as intermedia and outer Cu coating. SnO2 was introduced to the surface of rGO sheets in order to prevent the graphene aggregation with SnO2 serving as spacer and to provide enough active sites for subsequent Cu deposition. This process can guarantee rGO sheets to suffi ciently disperse and Cu nanoparticles to tightly and uniformly anchor on each layer of rGO by means of the SnO2 active sites as well as strictly control the reduction speed of Cu^2+. The complete cover of Cu nanoparticles on rGO sheets thoroughly avoids direct contact among rGO layers. Hence, the repeating structure can simultaneously solve the wettability problem between rGO and Cu matrix as well as improve the bonding strength between rGO and Cu matrix at the well-bonded Cu-SnO2-rGO interface. The isolated rGO can effectively hinder the glide of dislocation at Cu-rGO interface and support the applied loads. Finally, the compressive strength of CMCs was enhanced when the strengthening effi ciency reached up to 41. 展开更多
关键词 graphene Cu-SnO2-rGO structure copper matrix composites sensitization plasma activated sintering mechanical property
下载PDF
石墨烯和碳纳米管增强铜基复合材料的研究进展
17
作者 姜庆伟 林惠志 +3 位作者 丁云航 邵重阳 赵鲸 冯晶 《铜业工程》 CAS 2024年第5期63-78,共16页
本文回顾了碳纳米管(CNT)和石墨烯(Gr)增强铜基复合材料的研究进展,探讨了这些复合材料的制备方法、性能提升机制及潜在应用前景。CNT和Gr因独特的物理化学特性,作为铜基复合材料的理想增强相,显著提升了材料的力学性能、导电性和热导... 本文回顾了碳纳米管(CNT)和石墨烯(Gr)增强铜基复合材料的研究进展,探讨了这些复合材料的制备方法、性能提升机制及潜在应用前景。CNT和Gr因独特的物理化学特性,作为铜基复合材料的理想增强相,显著提升了材料的力学性能、导电性和热导率。首先回顾了铜基复合材料的传统制备技术,包括粉末冶金法和机械合金化法,随后介绍了新兴的化学气相沉积(CVD)和电沉积法,这些技术通过直接生长或电化学沉积实现更好的界面结合。对比分析了不同方法的优缺点,指出粉末冶金和机械合金化的成本较低但可能引起增强相分布不均,而CVD法虽能制备高质量材料但成本较高且环境影响敏感。进一步分析了CNT和Gr在铜基体中的分散性及界面结合对性能的影响,强调了良好分散性和强界面结合的重要性。在力学性能方面,CNT和Gr的分散性和界面结合对复合材料的强化机制起着关键作用,包括载荷转移、晶粒细化和Orowan强化等。此外,讨论了CNT和Gr增强铜基复合材料在耐腐蚀性、磨损性能及热管理等方面的应用潜力。尽管存在挑战,但这些复合材料在电力传输、电子器件和航空航天等领域显示出巨大应用前景。未来的研究将集中于微观结构控制、制备工艺创新和多功能复合材料开发,以实现更高性能的工业应用。 展开更多
关键词 铜基复合材料 碳纳米管 石墨烯 导电性 力学性能 微观结构
下载PDF
粉末冶金制备碳纳米管增强铜基复合材料研究进展
18
作者 张运娜 贾磊 +2 位作者 周永欣 吕振林 近藤勝義 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第8期3165-3179,共15页
碳纳米管具有优异的力学性能和导电、导热性能,作为增强体引入铜基体中有望开发出新一代高强、结构功能一体化的复合材料。然而,碳纳米管在铜基体中的分散性较差及其与铜的润湿性问题,成为制备碳纳米管增强铜基(CNTs/Cu)复合材料的主要... 碳纳米管具有优异的力学性能和导电、导热性能,作为增强体引入铜基体中有望开发出新一代高强、结构功能一体化的复合材料。然而,碳纳米管在铜基体中的分散性较差及其与铜的润湿性问题,成为制备碳纳米管增强铜基(CNTs/Cu)复合材料的主要挑战,并显著影响了复合材料的性能。本文对目前有关制备碳纳米管增强铜基复合材料的主要方法包括碳纳米管前期预处理方法、碳纳米管在铜粉末中分散的方法、复合材料的烧结方法进行总结,概述复合材料的力学性能、摩擦磨损性能以及导电导热性能的研究进展,并提出思考和展望,以便为制备CNTs/Cu复合材料研究提供参考。 展开更多
关键词 碳纳米管 铜基复合材料 分散性 力学性能
下载PDF
梯度层对铜基复合材料摩擦学性能的影响
19
作者 陆均明 李恒青 +2 位作者 张磊 李卫 刘洋赈 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第8期3120-3128,共9页
采用粉末冶金方法制备均质石墨−铜复合材料(10%C/Cu,质量分数)和2层梯度石墨−铜复合材料(7%C/Cu-10%C/Cu),研究梯度层对石墨−铜复合材料物理性能和摩擦学性能的影响,并对其摩擦磨损机制进行分析。研究结果表明:梯度复合材料的致密度和... 采用粉末冶金方法制备均质石墨−铜复合材料(10%C/Cu,质量分数)和2层梯度石墨−铜复合材料(7%C/Cu-10%C/Cu),研究梯度层对石墨−铜复合材料物理性能和摩擦学性能的影响,并对其摩擦磨损机制进行分析。研究结果表明:梯度复合材料的致密度和导电性相比于均质复合材料都得到了显著提升。在法向载荷为24、26和30 N时,梯度复合材料的磨损率相比于均质复合材料分别降低了8.24%、12.10%和11.30%;梯度材料和均质材料的平均摩擦因数和磨损率均随载荷的增加而升高;梯度复合材料的磨痕深度、宽度和材料挤出高度都比均质复合材料的小,且均随载荷的增加而增大。2种复合材料的磨损机制主要以磨粒磨损为主,氧化磨损和黏着磨损为辅。 展开更多
关键词 粉末冶金 梯度复合材料 石墨-铜复合材料 摩擦学性能 磨损机制
下载PDF
不同载荷下镀镍石墨-铜基复合材料的载流摩擦性能 被引量:1
20
作者 高希瑞 李恒青 刘洋赈 《材料热处理学报》 CAS CSCD 北大核心 2024年第1期34-41,共8页
首先采用化学镀的方法在石墨表面镀Ni,随后采用快速热压方法制备10 mass%镀Ni石墨-铜基复合材料。在不同载荷下对复合材料开展了载流摩擦实验,采用扫描电镜观察了复合材料的磨损表面形貌,进而从磨损表面形貌特征分析其损伤机制。结果表... 首先采用化学镀的方法在石墨表面镀Ni,随后采用快速热压方法制备10 mass%镀Ni石墨-铜基复合材料。在不同载荷下对复合材料开展了载流摩擦实验,采用扫描电镜观察了复合材料的磨损表面形貌,进而从磨损表面形貌特征分析其损伤机制。结果表明:在石墨表面成功镀覆了致密且均匀的Ni金属层,化学镀镍有效改善了石墨和铜之间的润湿性;镀镍石墨-铜基复合材料的相组成为石墨和铜基体两相,石墨在铜基体中呈弥散分布,未形成连续网状结构;随载荷的增加,复合材料的摩擦系数逐渐降低,磨痕宽度和磨损率逐渐升高,载流效率和载流稳定性逐渐下降;在低载荷下(20和40 N),复合材料的损伤机制以显微切削为主;随着载荷的增加(60和80 N),电侵蚀加剧,成为主要的损伤机制。 展开更多
关键词 镀Ni石墨-铜基复合材料 载流摩擦 损伤机制 化学镀
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部