An interphase migration and enrichment model of lead and zinc during molten copper slag depletion was established.The occurrence of various components in copper slag was predicted using sulfur-oxygen potential calcula...An interphase migration and enrichment model of lead and zinc during molten copper slag depletion was established.The occurrence of various components in copper slag was predicted using sulfur-oxygen potential calculations and confirmed through high-temperature experiments.The recovery rate of copper can reach 90.13%under the optimal conditions of 1200°C,an iron to silicon mass ratio of 1.0,3 wt.%ferrous sulfide,and a duration of 45 min.Lead(54.07 wt.%)and zinc(17.42 wt.%)are found in the flue dust as lead sulfate,lead sulfide,and zinc oxide,while copper matte contains lead(14.44 wt.%)and zinc sulfide(1.29 wt.%).The remaining lead and zinc are encapsulated as oxides within the fayalite phase.展开更多
Sawdust xanthate modified with ethanediamine was used for the removal of Cu(Ⅱ) and Ni(Ⅱ) from aqueous solution. The influence of various operating parameters such temperature and adsorbent dosage on the adsorpti...Sawdust xanthate modified with ethanediamine was used for the removal of Cu(Ⅱ) and Ni(Ⅱ) from aqueous solution. The influence of various operating parameters such temperature and adsorbent dosage on the adsorption isotherms of modified sawdust was investigated. Thermodynamic parameters, namely Gibbs free energy (△GΘ), enthalpy (△HΘ) and entropy (△SΘ) of Cu(Ⅱ) and Ni(Ⅱ) adsorption process were calculated, showing that the adsorption is a spontaneous and exothermic process. The modified extended Langmuir equation approaches provide excellent prediction of the binary adsorption. In single and binary systems, the overall adsorption data were best described by the pseudo-second order kinetic model, then the calculated values of activation energy of Cu(Ⅱ) and Ni(Ⅱ) adsorption process were 59.12 and 55.92 kJ/mol respectively. The results show that the affinity of each metal ion onto the modified sawdust surface is influenced by the presence of the other one.展开更多
The simultaneous determination of cobalt, copper and nickel using 1-(2-thiazolylazo)-2-naphthol (first figure of this article) by spectrophotometric method is a difficult problem in analytical chemistry, due to sp...The simultaneous determination of cobalt, copper and nickel using 1-(2-thiazolylazo)-2-naphthol (first figure of this article) by spectrophotometric method is a difficult problem in analytical chemistry, due to spectral interferences. By multivariate calibration methods, such as partial least squares (PLS) regression, it is possible to obtain a model adjusted to the concentration values of the mixtures used in the calibration range. Orthogonal signal correction (OSC) is a preprocessing technique used for removing the information unrelated to the target variables based on constrained principal component analysis. OSC is a suitable preprocessing method for PLS calibration of mixtures without loss of prediction capacity using spectrophotometric method. In this study, the calibration model is based on absorption spectra in the 550-750-nm range for 21 different mixtures of cobalt, copper and nickel. Calibration matrices were formed from samples containing 0.05-1.05, 0.05-1.30 and 0.05-0.80 μg·mL^-1 for cobalt, copper and nickel, respectively. The root mean square error of prediction (RMSEP) for cobalt, copper and nickel with OSC and without OSC were 0.007, 0.008, 0.011 and 0.031,0.037, 0.032 μg· mL^-1, respectively. This procedure allows the simultaneous determination of cobalt, copper and nickel in synthetic and real samples and good reliability of the determination was proved.展开更多
The solvent extraction technology, was applied to recover Cu^2+ and Ni^2+ from plating wastewater.Lix984N was chosen as the extractant due to-its gooff extraction performance. The influence parame-ters were examlned...The solvent extraction technology, was applied to recover Cu^2+ and Ni^2+ from plating wastewater.Lix984N was chosen as the extractant due to-its gooff extraction performance. The influence parame-ters were examlned. The results show that the separation of Cu^2+ and Ni" from sulphate medium can be realized by adjusting pH value with the help of Lix984N. For extracting Cu^2+ and Ni^2+, the optimal pH values are 4 and 10.5, and the maximal extraction percentages are 92.9% and 93.0%, respectively .With recovered Cu^2+ and Ni^2+ stripped in 170g.L^ -1 and 200 g.L^-1 H2SO4 medium, the stripping percentages of Cu^2+ and Ni^2+ are 92.9% and 93.0%, respectively. This method is simple and can be used to recover Cu^2+ and Ni^2+ from plating wastewater. And a flow sheet for separation of Cu^2+ and Ni^2+ is presented.展开更多
Dissimilar joints comprised of copper–nickel and steel alloys are a challenge for manufacturers in modern industries, as these metals are not thermomechanically or chemically well matched. The present study investiga...Dissimilar joints comprised of copper–nickel and steel alloys are a challenge for manufacturers in modern industries, as these metals are not thermomechanically or chemically well matched. The present study investigated the effects of tool rotational speed and linear speed on the microstructure and mechanical properties of friction stir-welded C71000 copper–nickel and 340 stainless steel alloys using a tungsten carbide tool with a cylindrical pin. The results indicated that a rotational-to-linear speed ratio of 12.5 r/mm did not cause any macro defects, whereas some tunneling defects and longitudinal cracks were found at other ratios that were lower and higher. Furthermore, chromium carbide was formed on the grain boundaries of the 304 stainless steel near the shoulder zone and inside the joint zone, directing carbon and chromium penetration toward the grain boundaries. Tensile strength and elongation percentages were 84% and 65% of the corresponding values in the copper–nickel base metal, respectively.展开更多
A number of synergistic solvent extraction (SSX) systems have been developed to recover nickel, cobalt, zinc and copper from sulphuric and chloride leach solutions by the solvent extraction team of CSIRO, Australia....A number of synergistic solvent extraction (SSX) systems have been developed to recover nickel, cobalt, zinc and copper from sulphuric and chloride leach solutions by the solvent extraction team of CSIRO, Australia. These in- clude (1) Versatic 10/CLXS0 system for the separation of Ni from Ca in sulphate solutions, (2) Versatic 10/4PC system for the separation of Ni and Co from Mn/Mg/Ca in sulphate solutions, (3) Cyanex 471X/HRJ-4277 system for the separation of Zn from Cd in sulphate solutions, (4) Versatic 10/LIX63 system for the separation of Co from Mn/Mg/Ca in sulphate solutions, (5) Versatic 10/LIX63/TBP system for separation of Ni and Co from Mn/Mg/Ca in sulphate solutions, (6) Versatic 10/LIX63 system for the separation of cobalt from nickel in sulphate solutions by difference in kinetics, (7) Cyanex 272/LIX84 system for the separation of Cu/Fe/Zn from Ni/Co in sulphate solutions, (8) Versatic 10/LIX63fFBP system to recover Cu/Ni from strong chloride solutions, and [9) Versatic 10/LIX63 system to separate Cu from Fe in strong chloride solutions. The synergistic effect on metal separation and efficiency is presented and possible industrial applications are demonstrated. The chemical stability of selected SSX systems is also reported.展开更多
The separation and recovery of Ni from the copper electrolyte by crystallization of nickel ammonium sulfate double salt were studied.It is found that the solubility of copper sulfate at the same temperature is less th...The separation and recovery of Ni from the copper electrolyte by crystallization of nickel ammonium sulfate double salt were studied.It is found that the solubility of copper sulfate at the same temperature is less than that of nickel sulfate,while the solubility of copper ammonium sulfate is greater than that of nickel ammonium sulfate.So,by adding(NH_(4))_(2)SO_(4),the Ni can be selectively crystallized from the copper electrolyte.By adding(NH_(4))_(2)SO_(4)at the molar ratio of(NH_(4))_(2)SO_(4)/NiSO_(4)≤0.8,and crystallizing at−15℃for 10 h,the Ni in the copper electrolyte can be crystallized in the form of Ni(NH_(4))_(2)(SO_(4))_(2)×6H_(2)O.The qualified product of NiSO_(4)×6H_(2)O can be obtained by pyrolyzing the crystals,dissolving the pyrolysis product in water,and then concentrating the dissolved solution for crystallization.The method of double salt crystallization is a clean,environmentally-friendly,cost-effective and efficient method for separating and recovering nickel from copper electrolyte.展开更多
Nickel, cobalt and copper were separated by solvent extraction with P204. The experimental results show that [Co(NH 3) 6] 3+ is an inert complex in extraction kinetics, therefore cobalt can be separated from nickel an...Nickel, cobalt and copper were separated by solvent extraction with P204. The experimental results show that [Co(NH 3) 6] 3+ is an inert complex in extraction kinetics, therefore cobalt can be separated from nickel and copper by non equilibrium solvent extraction. Under the conditions of temperature 25?℃, contact time of two phases 10?min, phase ratio 1∶1, aqueous pH 10.10 and concentration of P204 20%, [Co(NH 3) 6] 3+ is hardly extracted by P204, while the percentage extractions of nickel and copper are 79.3% and 93.9% respectively. Nickel and copper are separated by equilibrium solvent extraction with P204. Under the conditions of temperature 25?℃, contact time of two phases 1?min, phase ratio 1∶1, equilibrium pH 4.01 and concentration of P204 20%, the separation factor of copper and nickel is 216.展开更多
A novel silica-supported tert-butyl 2-picolyamino-N-acetate chelating resin (Si-AMPY-1) was successfully synthesized and characterized by elemental analysis, FT-IR, SEM and 13 C CP/MAS NMR. The adsorption behaviors of...A novel silica-supported tert-butyl 2-picolyamino-N-acetate chelating resin (Si-AMPY-1) was successfully synthesized and characterized by elemental analysis, FT-IR, SEM and 13 C CP/MAS NMR. The adsorption behaviors of the Si-AMPY-1 resin for Cu(Ⅱ) and Ni(Ⅱ) were studied with batch and column methods. The batch experiments indicated that the Si-AMPY-1 resin adsorbed Ni(Ⅱ) mainly via physisorption, while adsorbed Cu(II) via chemisorption. The column dynamic breakthrough curves revealed thatthe Si-AMPY-1 resin can efficiently separate Cu(Ⅱ) from the simulated nickel electrolyte before the breakthrough point. Moreover, the concentration of Cu(Ⅱ) in the column effluent was decreased to be less than 3 mg/L within the first 43 BV (bed volumes), and the mass ratio of Cu/Ni was 21:1 in the saturated resin, which completely satisfied the industrial requirements of the nickel electrorefining process. Therefore, it was concluded that the Si-AMPY-1 resin can be a promising candidate for the deep removal of Cu(Ⅱ) from the nickel electrolyte.展开更多
Gas-phase catalytic conversion of glycerol to value added chemicals was investigated over zinc-supported copper and nickel catalysts.The addition of aluminum in the support was also investigated in glycerol conversion...Gas-phase catalytic conversion of glycerol to value added chemicals was investigated over zinc-supported copper and nickel catalysts.The addition of aluminum in the support was also investigated in glycerol conversion and the results indicate an increase in the acidity and adsorption capacity for both copper and nickel catalysts.HRTEM and XRD analysis revealed Ni Zn alloy formation in the Ni/ZnO catalyst.The XRD patterns of the prepared Zn Al mixed oxide catalysts show the presence of Gahanite phase(ZnAl2O4).In addition,H2 chemisorption and TPR results suggest a strong metal-support interactions(SMSI)effect between Ni and Zn O particles.Bare supports Zn O and ZnAl(Zn/Al=0.5)were investigated in the glycerol conversion and they did not present activity.Copper supported on ZnO and ZnAl mixed oxide(Zn/Al=0.5)was active towards hydroxyacetone formation.Nickel was active in the hydrogenolysis of glycerol both for C–C and C–O bonds cleavage of glycerol producing CH4.Strong metal-support interactions(SMSI)between Ni and ZnO has a remarkable suppression effect on the methanation activity during the glycerol conversion.展开更多
A selective and sensitive reagent of 2-pyridine carboxaldehyde isonicotinyl hydrazone(2-PYAINH) was synthesized and studied for the spectrophotometric determination of nickel, copper, cobalt, and iron in detail. At ...A selective and sensitive reagent of 2-pyridine carboxaldehyde isonicotinyl hydrazone(2-PYAINH) was synthesized and studied for the spectrophotometric determination of nickel, copper, cobalt, and iron in detail. At a pH value of 7.0, 9,0, 9.0, and 8.0, respectively, which greatly increased the selectivity; nickel, copper, cobalt, and iron reacted with 2-PYAINH to form a 1:2 yellow-orange, 1:2 yellow-green, 1:2 yellow and 1:1 yellow complexes, with absorption peaks at 363, 352, 346, and 359 nm, respectively. Under the optimal conditions, Beer's law was obeyed over the ranges of 0.01-1.4, 0.01-1.5, 0.01-2.7, and 0.01-5.4 mg/L respectively. The apparent molar absorptivity and Sandell's sensitivities were 8.4×10^4, 5.2×10^4, 7.1×10^4, and 3.9×10^4 L·mol^-l·cm^-1, respectively, and 0.00069, 0.0012, 0.00078, and 0.0014 μg·cm2, respectively. The detection limits were found to be 0.001, 0.002, 0.003, and 0.01 mg/L, respectively. The detailed study of various interfering ions to make the method more sensitive was carried out and selective and several real samples were analyzed with satisfactory results.展开更多
Cu-Ni-Al alloys at different concentrations were obtained using a high frequency induction melting unit, keeping a balance in the nominal compositions. Light alloys are important to be used in industrial applications....Cu-Ni-Al alloys at different concentrations were obtained using a high frequency induction melting unit, keeping a balance in the nominal compositions. Light alloys are important to be used in industrial applications. Aluminum additions result in a positive hardness increment of the ternary alloys in comparison with the binary Cu-Ni alloys. Generalized wear mechanisms of the alloys with low aluminum content are basically type abrasive, while samples with 5 and 10 at.% Al present an oxidative-adhesive wear mechanism. Wear results have indicated that aluminum addition affects positively the wear resistance, mainly in samples with high aluminum content product of the creation during the test of different oxides corresponding to the elements present in the alloys.展开更多
Separation of copper and nickel by liquid-liquid extraction from aqueous solutions was studied using LIX 664N in kerosene as solvent. Both metals were taken in their sulfate form and ratio of copper to nickel in feed ...Separation of copper and nickel by liquid-liquid extraction from aqueous solutions was studied using LIX 664N in kerosene as solvent. Both metals were taken in their sulfate form and ratio of copper to nickel in feed solutions was maintained as 10:1. LIX 664N concentration in kerosene was varied from 10% to 40% (v/v) and its effect was studied on percent extraction of copper and nickel for organic to aqueous (O:A) phase ratio of 2:1 at pH 2. Experimental results showed that at pH 2, copper was selectively extracted from its mixture with nickel. Selectivity for copper extraction was as high as 6000 with 40% LIX 664N. Calculations using extraction isotherm indicate almost complete recovery of copper in two stages with O:A ratio of 1:1 and in one stage with O:A ratio of 2:1. After extraction of copper, the pH of raffinate containing nickel was adjusted to a value of 9 by addition of ammonia solution. The effect of LIX 664N concentration on extraction of nickel was studied. Up to 80% nickel could be extracted with 30% LIX 664N at O:A phase ratio of 2:1. Stripping of copper from the organic phase with 180 g/l sulfuric acid at O:A phase ratio of 1:1 gave 98.5% copper recovery in a two-stage operation.展开更多
The respective compounds of copper, cadmium and lead, owing to their strong toxic potential, as a result of industrial effluent, have left a trail of contamination in humans and the environment. This paper aimed to st...The respective compounds of copper, cadmium and lead, owing to their strong toxic potential, as a result of industrial effluent, have left a trail of contamination in humans and the environment. This paper aimed to study the electrode position on the removal of aqueous solutions of cadmium, lead and copper, using an electrolytic cell with a metallic screen cathode of carbon steel and platinum anode. Removal efficiencies were obtained by analysis of the solutions before and after treatment, using the methodology of cathodic-stripping voltammetry with a mercury drop electrode to quantify the concentrations of Cd<sup>2+</sup>, Pb2<sup>2+</sup> and Cu<sup>2+</sup>. Removal efficiencies were obtained of 94.07% for cadmium, 94.71% for lead and 96.19% for copper, demonstrating that electrolytic removal is an effective technique for the removal of these metals from simulated industrial wastewater.展开更多
This paper obtains the lowest-energy geometric structures and the electronic and magnetic properties of small CuNiN clusters by using all-electron density functional theory. The calculated results reveal that the Cu a...This paper obtains the lowest-energy geometric structures and the electronic and magnetic properties of small CuNiN clusters by using all-electron density functional theory. The calculated results reveal that the Cu atom prefers to occupy the apical site when N ≤ 9 and for the clusters with N = 10, the Cu atom starts to encapsulate in the cage. The CuNi7 and CuNi9 are magic clusters. The magnetism correlates closely with the symmetry of the clusters. For these clusters, the charge tends to transfer from the nickel atoms to the copper atoms. It finds that the doping of Cu atom decreases the stability of pure NiN clusters.展开更多
The solid-liquid interfacial tensions of Cu(solid)-Pb(liquid)andCu(solid)-Bi(liquid)binary systems have been determined by the dihedral angle method.The results show that at 850℃ the interfacial tensions are 368±...The solid-liquid interfacial tensions of Cu(solid)-Pb(liquid)andCu(solid)-Bi(liquid)binary systems have been determined by the dihedral angle method.The results show that at 850℃ the interfacial tensions are 368±55mN/m for Cu-Pb sys-tem and 336±35mN/m for Cu-Bi systa,respectively,the error ranges of which aremore narrow than those found in some papers published abroad.In addition,there is nodetective segregation of other solute atoms or compounds in the vicinity of the tip of cop-per grain boundary where dihedral angles formed.展开更多
Nickel-coated graphite flakes/copper(GN/Cu) composites were fabricated by spark plasma sintering with the surface of graphite flakes(GFs) being modified by Ni–P electroless plating. The effects of the phase trans...Nickel-coated graphite flakes/copper(GN/Cu) composites were fabricated by spark plasma sintering with the surface of graphite flakes(GFs) being modified by Ni–P electroless plating. The effects of the phase transition of the amorphous Ni–P plating and of Ni diffusion into the Cu matrix on the densification behavior, interfacial microstructure, and thermal conductivity(TC) of the GN/Cu composites were systematically investigated. The introduction of Ni–P electroless plating efficiently reduced the densification temperature of uncoated GF/Cu composites from 850 to 650℃ and slightly increased the TC of the X–Y basal plane of the GF/Cu composites with 20 vol%–30 vol% graphite flakes. However, when the graphite flake content was greater than 30 vol%, the TC of the GF/Cu composites decreased with the introduction of Ni–P plating as a result of the combined effect of the improved heat-transfer interface with the transition layer, P generated at the interface, and the diffusion of Ni into the matrix. Given the effect of the Ni content on the TC of the Cu matrix and on the interface thermal resistance, a modified effective medium approximation model was used to predict the TC of the prepared GF/Cu composites.展开更多
[Objectives] The contents of copper and lead in the soil of the Yellow River Wetland were determined by flame atomic absorption spectrometry, which provides a theoretical basis for the treatment of soil pollution. [Me...[Objectives] The contents of copper and lead in the soil of the Yellow River Wetland were determined by flame atomic absorption spectrometry, which provides a theoretical basis for the treatment of soil pollution. [Methods] The soil was digested with a concentrated nitric acid-hydrofluoric acid-perchloric acid system, and the contents of heavy metals such as copper and lead in the Yellow River Wetland of Shaanxi Province were determined by flame atomic absorption spectrometry. [Results] The correlation coefficients reached 0.999 5 in the range of 0.00-1.00 mg/L, indicating good linearity. [Conclusions] The method is simple in operation, good in reproducibility, high in sensitivity to most elements, and can be widely used.展开更多
Two complexes, Cu(HnicO)2 1 and Ni(HnicO)2(H2O)2 2 (H2nicO = 2-hydroxynicolinic acid), were synthesized by hydrothermal reactions and structurally characterized. Complex 1 crystallizes in monoclinic, space gro...Two complexes, Cu(HnicO)2 1 and Ni(HnicO)2(H2O)2 2 (H2nicO = 2-hydroxynicolinic acid), were synthesized by hydrothermal reactions and structurally characterized. Complex 1 crystallizes in monoclinic, space group P21/n, with a = 8.314(7), b = 6.275(4), c = 11.283(7)A, β = 98.32(3)°, V = 582.5(7)A^3, Z = 2, Mr = 339.74, Dc = 1.937 g/cm3, F(000) = 342, μ = 1.908 mm^-1, S = 1.097, the final R = 0.0284 mad wR = 0.0781 for 1177 observed reflections with Ⅰ 〉 2σ(Ⅰ). Complex 2 crystallizes in monoclinic, space group P21/c, with a = 7.438(5), b = 12.22(1), c = 7.537(5)A,β = 100.07(3)°, V= 674.3(8)A3, Z = 2, Mr = 370.95, Dc = 1.827 g/cm^3, F(000) = 380, = 1.487 mm^-1, S = 1.041, the final R = 0.0335 and wR = 0.0779 for 1202 observed reflections with I 〉 2σ(Ⅰ). There are extended 3D framework structures in complexes 1 and 2 due to the N-H…O and C-H…O hydrogen bonds. The copper atom in 1 has square planar coordination, while the nickel atom in 2 adopts octahedral coordination geometry. The TG curve shows that complex 2 is stable in solid state to 150 ℃.展开更多
The present study focused on the re-processing of copper and nickel from mine tailings. In this work, recovery of copper and nickel from mine tailing by combined process of flotation and high pressure oxidative leachi...The present study focused on the re-processing of copper and nickel from mine tailings. In this work, recovery of copper and nickel from mine tailing by combined process of flotation and high pressure oxidative leaching were considered. In the first stage, effects of flotation parameters including collector type, collector dosage, and pH and pulp density were examined. The results showed that over 80% copper recovery was achieved under the optimized flotation conditions while nickel recovery was lower than 30% due to its co-ex-istence with gangue minerals of pyrrhotite, pyrite and other clay minerals. In the second stage, key parameters, particularly concentration of sulfuric acid, temperature, pressure and leaching time were investigated to test the leaching efficiency of copper and nickel from the flotation concentrate with high pressure oxidative leaching (HPOL). A comparison was made between the leaching efficiencies of copper and nickel from flotation concentrates and mine tailing.展开更多
基金supported by the Fundamental Research Funds for Central Universities,China(No.N2025004)the National Natural Science Foundation of China(Nos.U2102213,U1702253,52204419)+2 种基金Major Science and Technology Project of Liaoning Province,China(No.2021JH1/10400032)Major Science and Technology Project of Guangxi Province,China(No.2021AA12013)Liaoning Natural Science Foundation,China(No.2022-BS-076)。
文摘An interphase migration and enrichment model of lead and zinc during molten copper slag depletion was established.The occurrence of various components in copper slag was predicted using sulfur-oxygen potential calculations and confirmed through high-temperature experiments.The recovery rate of copper can reach 90.13%under the optimal conditions of 1200°C,an iron to silicon mass ratio of 1.0,3 wt.%ferrous sulfide,and a duration of 45 min.Lead(54.07 wt.%)and zinc(17.42 wt.%)are found in the flue dust as lead sulfate,lead sulfide,and zinc oxide,while copper matte contains lead(14.44 wt.%)and zinc sulfide(1.29 wt.%).The remaining lead and zinc are encapsulated as oxides within the fayalite phase.
基金Project(41061044)supported by the National Natural Science Foundation of ChinaProjects(2010GXNSFD013016,2012GXNSFAA053017)supported by the Natural Science Foundation of Guangxi,China
文摘Sawdust xanthate modified with ethanediamine was used for the removal of Cu(Ⅱ) and Ni(Ⅱ) from aqueous solution. The influence of various operating parameters such temperature and adsorbent dosage on the adsorption isotherms of modified sawdust was investigated. Thermodynamic parameters, namely Gibbs free energy (△GΘ), enthalpy (△HΘ) and entropy (△SΘ) of Cu(Ⅱ) and Ni(Ⅱ) adsorption process were calculated, showing that the adsorption is a spontaneous and exothermic process. The modified extended Langmuir equation approaches provide excellent prediction of the binary adsorption. In single and binary systems, the overall adsorption data were best described by the pseudo-second order kinetic model, then the calculated values of activation energy of Cu(Ⅱ) and Ni(Ⅱ) adsorption process were 59.12 and 55.92 kJ/mol respectively. The results show that the affinity of each metal ion onto the modified sawdust surface is influenced by the presence of the other one.
文摘The simultaneous determination of cobalt, copper and nickel using 1-(2-thiazolylazo)-2-naphthol (first figure of this article) by spectrophotometric method is a difficult problem in analytical chemistry, due to spectral interferences. By multivariate calibration methods, such as partial least squares (PLS) regression, it is possible to obtain a model adjusted to the concentration values of the mixtures used in the calibration range. Orthogonal signal correction (OSC) is a preprocessing technique used for removing the information unrelated to the target variables based on constrained principal component analysis. OSC is a suitable preprocessing method for PLS calibration of mixtures without loss of prediction capacity using spectrophotometric method. In this study, the calibration model is based on absorption spectra in the 550-750-nm range for 21 different mixtures of cobalt, copper and nickel. Calibration matrices were formed from samples containing 0.05-1.05, 0.05-1.30 and 0.05-0.80 μg·mL^-1 for cobalt, copper and nickel, respectively. The root mean square error of prediction (RMSEP) for cobalt, copper and nickel with OSC and without OSC were 0.007, 0.008, 0.011 and 0.031,0.037, 0.032 μg· mL^-1, respectively. This procedure allows the simultaneous determination of cobalt, copper and nickel in synthetic and real samples and good reliability of the determination was proved.
基金Supported by the National Key Technologies Research and Development Program of China during the 1 lth Five-Year Plan Period (2007BAB22B01) and the Young Science Foundation of Jiangxi Province Education Office (GJJ11124).
文摘The solvent extraction technology, was applied to recover Cu^2+ and Ni^2+ from plating wastewater.Lix984N was chosen as the extractant due to-its gooff extraction performance. The influence parame-ters were examlned. The results show that the separation of Cu^2+ and Ni" from sulphate medium can be realized by adjusting pH value with the help of Lix984N. For extracting Cu^2+ and Ni^2+, the optimal pH values are 4 and 10.5, and the maximal extraction percentages are 92.9% and 93.0%, respectively .With recovered Cu^2+ and Ni^2+ stripped in 170g.L^ -1 and 200 g.L^-1 H2SO4 medium, the stripping percentages of Cu^2+ and Ni^2+ are 92.9% and 93.0%, respectively. This method is simple and can be used to recover Cu^2+ and Ni^2+ from plating wastewater. And a flow sheet for separation of Cu^2+ and Ni^2+ is presented.
基金the funding support of Babol Noshirvani University of Technology (No. BNUT/370167/97)
文摘Dissimilar joints comprised of copper–nickel and steel alloys are a challenge for manufacturers in modern industries, as these metals are not thermomechanically or chemically well matched. The present study investigated the effects of tool rotational speed and linear speed on the microstructure and mechanical properties of friction stir-welded C71000 copper–nickel and 340 stainless steel alloys using a tungsten carbide tool with a cylindrical pin. The results indicated that a rotational-to-linear speed ratio of 12.5 r/mm did not cause any macro defects, whereas some tunneling defects and longitudinal cracks were found at other ratios that were lower and higher. Furthermore, chromium carbide was formed on the grain boundaries of the 304 stainless steel near the shoulder zone and inside the joint zone, directing carbon and chromium penetration toward the grain boundaries. Tensile strength and elongation percentages were 84% and 65% of the corresponding values in the copper–nickel base metal, respectively.
文摘A number of synergistic solvent extraction (SSX) systems have been developed to recover nickel, cobalt, zinc and copper from sulphuric and chloride leach solutions by the solvent extraction team of CSIRO, Australia. These in- clude (1) Versatic 10/CLXS0 system for the separation of Ni from Ca in sulphate solutions, (2) Versatic 10/4PC system for the separation of Ni and Co from Mn/Mg/Ca in sulphate solutions, (3) Cyanex 471X/HRJ-4277 system for the separation of Zn from Cd in sulphate solutions, (4) Versatic 10/LIX63 system for the separation of Co from Mn/Mg/Ca in sulphate solutions, (5) Versatic 10/LIX63/TBP system for separation of Ni and Co from Mn/Mg/Ca in sulphate solutions, (6) Versatic 10/LIX63 system for the separation of cobalt from nickel in sulphate solutions by difference in kinetics, (7) Cyanex 272/LIX84 system for the separation of Cu/Fe/Zn from Ni/Co in sulphate solutions, (8) Versatic 10/LIX63fFBP system to recover Cu/Ni from strong chloride solutions, and [9) Versatic 10/LIX63 system to separate Cu from Fe in strong chloride solutions. The synergistic effect on metal separation and efficiency is presented and possible industrial applications are demonstrated. The chemical stability of selected SSX systems is also reported.
基金the National Natural Science Foundation of China(No.50274075).
文摘The separation and recovery of Ni from the copper electrolyte by crystallization of nickel ammonium sulfate double salt were studied.It is found that the solubility of copper sulfate at the same temperature is less than that of nickel sulfate,while the solubility of copper ammonium sulfate is greater than that of nickel ammonium sulfate.So,by adding(NH_(4))_(2)SO_(4),the Ni can be selectively crystallized from the copper electrolyte.By adding(NH_(4))_(2)SO_(4)at the molar ratio of(NH_(4))_(2)SO_(4)/NiSO_(4)≤0.8,and crystallizing at−15℃for 10 h,the Ni in the copper electrolyte can be crystallized in the form of Ni(NH_(4))_(2)(SO_(4))_(2)×6H_(2)O.The qualified product of NiSO_(4)×6H_(2)O can be obtained by pyrolyzing the crystals,dissolving the pyrolysis product in water,and then concentrating the dissolved solution for crystallization.The method of double salt crystallization is a clean,environmentally-friendly,cost-effective and efficient method for separating and recovering nickel from copper electrolyte.
文摘Nickel, cobalt and copper were separated by solvent extraction with P204. The experimental results show that [Co(NH 3) 6] 3+ is an inert complex in extraction kinetics, therefore cobalt can be separated from nickel and copper by non equilibrium solvent extraction. Under the conditions of temperature 25?℃, contact time of two phases 10?min, phase ratio 1∶1, aqueous pH 10.10 and concentration of P204 20%, [Co(NH 3) 6] 3+ is hardly extracted by P204, while the percentage extractions of nickel and copper are 79.3% and 93.9% respectively. Nickel and copper are separated by equilibrium solvent extraction with P204. Under the conditions of temperature 25?℃, contact time of two phases 1?min, phase ratio 1∶1, equilibrium pH 4.01 and concentration of P204 20%, the separation factor of copper and nickel is 216.
基金Project (2014CB643401) supported by the National Basic Research Program of ChinaProjects (51134007,51474256) supported by the National Natural Science Foundation of ChinaProject (2016TP1007) supported by the Hunan Provincial Science and Technology Plan Project in China
文摘A novel silica-supported tert-butyl 2-picolyamino-N-acetate chelating resin (Si-AMPY-1) was successfully synthesized and characterized by elemental analysis, FT-IR, SEM and 13 C CP/MAS NMR. The adsorption behaviors of the Si-AMPY-1 resin for Cu(Ⅱ) and Ni(Ⅱ) were studied with batch and column methods. The batch experiments indicated that the Si-AMPY-1 resin adsorbed Ni(Ⅱ) mainly via physisorption, while adsorbed Cu(II) via chemisorption. The column dynamic breakthrough curves revealed thatthe Si-AMPY-1 resin can efficiently separate Cu(Ⅱ) from the simulated nickel electrolyte before the breakthrough point. Moreover, the concentration of Cu(Ⅱ) in the column effluent was decreased to be less than 3 mg/L within the first 43 BV (bed volumes), and the mass ratio of Cu/Ni was 21:1 in the saturated resin, which completely satisfied the industrial requirements of the nickel electrorefining process. Therefore, it was concluded that the Si-AMPY-1 resin can be a promising candidate for the deep removal of Cu(Ⅱ) from the nickel electrolyte.
基金financial support from Fondecyt.R.J.Chimentao is grateful to Fondecyt 1180243Fondecyt 1161660+3 种基金the Universitat Rovira i VirgiliUniversidad de Costa Rica for the financial supportICREA Academia programGC 2017 SGR 128.
文摘Gas-phase catalytic conversion of glycerol to value added chemicals was investigated over zinc-supported copper and nickel catalysts.The addition of aluminum in the support was also investigated in glycerol conversion and the results indicate an increase in the acidity and adsorption capacity for both copper and nickel catalysts.HRTEM and XRD analysis revealed Ni Zn alloy formation in the Ni/ZnO catalyst.The XRD patterns of the prepared Zn Al mixed oxide catalysts show the presence of Gahanite phase(ZnAl2O4).In addition,H2 chemisorption and TPR results suggest a strong metal-support interactions(SMSI)effect between Ni and Zn O particles.Bare supports Zn O and ZnAl(Zn/Al=0.5)were investigated in the glycerol conversion and they did not present activity.Copper supported on ZnO and ZnAl mixed oxide(Zn/Al=0.5)was active towards hydroxyacetone formation.Nickel was active in the hydrogenolysis of glycerol both for C–C and C–O bonds cleavage of glycerol producing CH4.Strong metal-support interactions(SMSI)between Ni and ZnO has a remarkable suppression effect on the methanation activity during the glycerol conversion.
文摘A selective and sensitive reagent of 2-pyridine carboxaldehyde isonicotinyl hydrazone(2-PYAINH) was synthesized and studied for the spectrophotometric determination of nickel, copper, cobalt, and iron in detail. At a pH value of 7.0, 9,0, 9.0, and 8.0, respectively, which greatly increased the selectivity; nickel, copper, cobalt, and iron reacted with 2-PYAINH to form a 1:2 yellow-orange, 1:2 yellow-green, 1:2 yellow and 1:1 yellow complexes, with absorption peaks at 363, 352, 346, and 359 nm, respectively. Under the optimal conditions, Beer's law was obeyed over the ranges of 0.01-1.4, 0.01-1.5, 0.01-2.7, and 0.01-5.4 mg/L respectively. The apparent molar absorptivity and Sandell's sensitivities were 8.4×10^4, 5.2×10^4, 7.1×10^4, and 3.9×10^4 L·mol^-l·cm^-1, respectively, and 0.00069, 0.0012, 0.00078, and 0.0014 μg·cm2, respectively. The detection limits were found to be 0.001, 0.002, 0.003, and 0.01 mg/L, respectively. The detailed study of various interfering ions to make the method more sensitive was carried out and selective and several real samples were analyzed with satisfactory results.
文摘Cu-Ni-Al alloys at different concentrations were obtained using a high frequency induction melting unit, keeping a balance in the nominal compositions. Light alloys are important to be used in industrial applications. Aluminum additions result in a positive hardness increment of the ternary alloys in comparison with the binary Cu-Ni alloys. Generalized wear mechanisms of the alloys with low aluminum content are basically type abrasive, while samples with 5 and 10 at.% Al present an oxidative-adhesive wear mechanism. Wear results have indicated that aluminum addition affects positively the wear resistance, mainly in samples with high aluminum content product of the creation during the test of different oxides corresponding to the elements present in the alloys.
文摘Separation of copper and nickel by liquid-liquid extraction from aqueous solutions was studied using LIX 664N in kerosene as solvent. Both metals were taken in their sulfate form and ratio of copper to nickel in feed solutions was maintained as 10:1. LIX 664N concentration in kerosene was varied from 10% to 40% (v/v) and its effect was studied on percent extraction of copper and nickel for organic to aqueous (O:A) phase ratio of 2:1 at pH 2. Experimental results showed that at pH 2, copper was selectively extracted from its mixture with nickel. Selectivity for copper extraction was as high as 6000 with 40% LIX 664N. Calculations using extraction isotherm indicate almost complete recovery of copper in two stages with O:A ratio of 1:1 and in one stage with O:A ratio of 2:1. After extraction of copper, the pH of raffinate containing nickel was adjusted to a value of 9 by addition of ammonia solution. The effect of LIX 664N concentration on extraction of nickel was studied. Up to 80% nickel could be extracted with 30% LIX 664N at O:A phase ratio of 2:1. Stripping of copper from the organic phase with 180 g/l sulfuric acid at O:A phase ratio of 1:1 gave 98.5% copper recovery in a two-stage operation.
文摘The respective compounds of copper, cadmium and lead, owing to their strong toxic potential, as a result of industrial effluent, have left a trail of contamination in humans and the environment. This paper aimed to study the electrode position on the removal of aqueous solutions of cadmium, lead and copper, using an electrolytic cell with a metallic screen cathode of carbon steel and platinum anode. Removal efficiencies were obtained by analysis of the solutions before and after treatment, using the methodology of cathodic-stripping voltammetry with a mercury drop electrode to quantify the concentrations of Cd<sup>2+</sup>, Pb2<sup>2+</sup> and Cu<sup>2+</sup>. Removal efficiencies were obtained of 94.07% for cadmium, 94.71% for lead and 96.19% for copper, demonstrating that electrolytic removal is an effective technique for the removal of these metals from simulated industrial wastewater.
文摘This paper obtains the lowest-energy geometric structures and the electronic and magnetic properties of small CuNiN clusters by using all-electron density functional theory. The calculated results reveal that the Cu atom prefers to occupy the apical site when N ≤ 9 and for the clusters with N = 10, the Cu atom starts to encapsulate in the cage. The CuNi7 and CuNi9 are magic clusters. The magnetism correlates closely with the symmetry of the clusters. For these clusters, the charge tends to transfer from the nickel atoms to the copper atoms. It finds that the doping of Cu atom decreases the stability of pure NiN clusters.
基金The project supported by the State Education Committee of China
文摘The solid-liquid interfacial tensions of Cu(solid)-Pb(liquid)andCu(solid)-Bi(liquid)binary systems have been determined by the dihedral angle method.The results show that at 850℃ the interfacial tensions are 368±55mN/m for Cu-Pb sys-tem and 336±35mN/m for Cu-Bi systa,respectively,the error ranges of which aremore narrow than those found in some papers published abroad.In addition,there is nodetective segregation of other solute atoms or compounds in the vicinity of the tip of cop-per grain boundary where dihedral angles formed.
基金financially supported by the National Natural Science Foundation of China (No. 51374028)Fundamental Research Funds for the Central Universities (FRF-GF-17-B37)
文摘Nickel-coated graphite flakes/copper(GN/Cu) composites were fabricated by spark plasma sintering with the surface of graphite flakes(GFs) being modified by Ni–P electroless plating. The effects of the phase transition of the amorphous Ni–P plating and of Ni diffusion into the Cu matrix on the densification behavior, interfacial microstructure, and thermal conductivity(TC) of the GN/Cu composites were systematically investigated. The introduction of Ni–P electroless plating efficiently reduced the densification temperature of uncoated GF/Cu composites from 850 to 650℃ and slightly increased the TC of the X–Y basal plane of the GF/Cu composites with 20 vol%–30 vol% graphite flakes. However, when the graphite flake content was greater than 30 vol%, the TC of the GF/Cu composites decreased with the introduction of Ni–P plating as a result of the combined effect of the improved heat-transfer interface with the transition layer, P generated at the interface, and the diffusion of Ni into the matrix. Given the effect of the Ni content on the TC of the Cu matrix and on the interface thermal resistance, a modified effective medium approximation model was used to predict the TC of the prepared GF/Cu composites.
基金Supported by Scientific Research Program Funded by Shaanxi Provincial Education Department(16JK1275)Fund for Supporting National Undergraduate Scientific and Technological Innovation(16XK046)
文摘[Objectives] The contents of copper and lead in the soil of the Yellow River Wetland were determined by flame atomic absorption spectrometry, which provides a theoretical basis for the treatment of soil pollution. [Methods] The soil was digested with a concentrated nitric acid-hydrofluoric acid-perchloric acid system, and the contents of heavy metals such as copper and lead in the Yellow River Wetland of Shaanxi Province were determined by flame atomic absorption spectrometry. [Results] The correlation coefficients reached 0.999 5 in the range of 0.00-1.00 mg/L, indicating good linearity. [Conclusions] The method is simple in operation, good in reproducibility, high in sensitivity to most elements, and can be widely used.
基金the National Natural Science Foundation of China (No. 20431010)
文摘Two complexes, Cu(HnicO)2 1 and Ni(HnicO)2(H2O)2 2 (H2nicO = 2-hydroxynicolinic acid), were synthesized by hydrothermal reactions and structurally characterized. Complex 1 crystallizes in monoclinic, space group P21/n, with a = 8.314(7), b = 6.275(4), c = 11.283(7)A, β = 98.32(3)°, V = 582.5(7)A^3, Z = 2, Mr = 339.74, Dc = 1.937 g/cm3, F(000) = 342, μ = 1.908 mm^-1, S = 1.097, the final R = 0.0284 mad wR = 0.0781 for 1177 observed reflections with Ⅰ 〉 2σ(Ⅰ). Complex 2 crystallizes in monoclinic, space group P21/c, with a = 7.438(5), b = 12.22(1), c = 7.537(5)A,β = 100.07(3)°, V= 674.3(8)A3, Z = 2, Mr = 370.95, Dc = 1.827 g/cm^3, F(000) = 380, = 1.487 mm^-1, S = 1.041, the final R = 0.0335 and wR = 0.0779 for 1202 observed reflections with I 〉 2σ(Ⅰ). There are extended 3D framework structures in complexes 1 and 2 due to the N-H…O and C-H…O hydrogen bonds. The copper atom in 1 has square planar coordination, while the nickel atom in 2 adopts octahedral coordination geometry. The TG curve shows that complex 2 is stable in solid state to 150 ℃.
文摘The present study focused on the re-processing of copper and nickel from mine tailings. In this work, recovery of copper and nickel from mine tailing by combined process of flotation and high pressure oxidative leaching were considered. In the first stage, effects of flotation parameters including collector type, collector dosage, and pH and pulp density were examined. The results showed that over 80% copper recovery was achieved under the optimized flotation conditions while nickel recovery was lower than 30% due to its co-ex-istence with gangue minerals of pyrrhotite, pyrite and other clay minerals. In the second stage, key parameters, particularly concentration of sulfuric acid, temperature, pressure and leaching time were investigated to test the leaching efficiency of copper and nickel from the flotation concentrate with high pressure oxidative leaching (HPOL). A comparison was made between the leaching efficiencies of copper and nickel from flotation concentrates and mine tailing.