In this study, a gene encoding a superoxide dismutase (SOD) was cloned from senescent leaves of cotton (Gossypium hirsutum), and its expressing profile was analyzed. The gene was cloned by rapid amplification of c...In this study, a gene encoding a superoxide dismutase (SOD) was cloned from senescent leaves of cotton (Gossypium hirsutum), and its expressing profile was analyzed. The gene was cloned by rapid amplification of cDNA ends (RACE) method. Northern blotting was used to show the profile of the gene expression, and the enzyme activity was mensurated by NBT deoxidization method in different growth periods. The full length of a gene of cytosolic copper/zinc superoxide dismutase (Cu/Zn-SOD) was isolated from cotton (GenBank Accession Number: DQ445093). The sequence of cDNA contained 682 bp, the opening reading frame 456 bp, and encoded polypeptide 152 amino acids with the predicted molecular mass of 15.03 kD and theoretical pI of 6.09. The amino acid sequence was similar with the other plants from 82 to 87%. Southern blotting showed that the gene had different number of copies in different cotton species. Northern blotting suggested that the gene had different expression in different tissues and development stages. The enzyme activity was the highest in peak flowering stage. The cotton cytosolic (Cu/Zn-SOD) had lower copies in the upland cotton. The copper/zinc superoxide dismutase mRNA expressing level showed regular changing in the whole development stages; it was lower in the former stages, higher in latter stages and the highest at the peak flowering stage. The curve of the copper/zinc superoxide dismutase mRNA expressing level was consistent with that of the Cu/Zn-SOD enzyme activity. The copper/zinc superoxide dismutase mRNA expressing levels of different organs showed that the gene was higher in the root, leaf, and lower in the flower.展开更多
In this experiment,the cancer tissues and cells,Which were derived from Lewis lung cancer and A549 lung Cancer cell line,were respectively divided into four groups and zinc, manganese and selenium were respectively ad...In this experiment,the cancer tissues and cells,Which were derived from Lewis lung cancer and A549 lung Cancer cell line,were respectively divided into four groups and zinc, manganese and selenium were respectively added to the medium for 24 hours. The superoxide dismutase activity in the tissues and the cells was estimated. It was found that the SOD activity was enhanced by zinc and manganese and the effect of zinc on SOD activity was superior to that of manganese. We supposed that the enhance of the SOD activity was relative to the activation of the SOD apoenzymes. This experimental result indicated that the inhibitory effect of zinc and manganese on carcinogenesis was achieved by SOD and the elements might be considered a SOD activator.展开更多
Superoxide dismutase(SOD) is a crucial antioxidant enzyme playing the first defense line in antioxidant pathways against reactive oxygen species in various organisms including marine invertebrates. There exist mainl...Superoxide dismutase(SOD) is a crucial antioxidant enzyme playing the first defense line in antioxidant pathways against reactive oxygen species in various organisms including marine invertebrates. There exist mainly two specific forms, Cu/Zn-SOD(SOD1) and Mn-SOD(SOD2), in eukaryotes. SODs are known to be concurrently modulated by a variety of environmental stressors. By using central composite experimental design and response surface method, the joint effects of water temperature(18–34°C) and copper ion concentration(0.1–1.5 mg/L) on the total SOD activity in the digestive gland of Crassostrea ariakensis were studied. The results showed that the linear effect of temperature was highly significant(P〈0.01), the quadratic effect of temperature was significant(P〈0.05); the linear effect of copper ion concentration was not significant(P〉0.05), while the quadratic effect of copper ion concentration was highly significant(P〈0.01); the interactive effect of temperature and copper ion concentration was not significant(P〉0.05); the effect of temperature was greater than that of copper ion concentration. The model equation of digestive gland SOD enzyme activity towards the two factors of interest was established, with R2 and predictive R2 as high as 0.961 6 and 0.820 7, respectively, suggesting that the goodness-offit to experimental data be very satisfactory, and could be applied to prediction of digestive gland SOD activity in C. ariakensis under the conditions of the experiment. Our results would be conducive to addressing the health of aquatic animals and/or to detecting environmental problems by taking SOD as a potential bioindicator.展开更多
Copper (Cu) is an important mineral nutrient found in chloroplasts as a cofactor associated with plastocyanin and Cu/Zn superoxide dismutase (Cu/ZnSOD). Superoxide dismutases are metallo-enzymes found in most oxyg...Copper (Cu) is an important mineral nutrient found in chloroplasts as a cofactor associated with plastocyanin and Cu/Zn superoxide dismutase (Cu/ZnSOD). Superoxide dismutases are metallo-enzymes found in most oxygenic organisms with proposed roles in reducing oxidative stress. Several recent studies in Arabidopsis have shown that microRNAs and a SQUAMOSA promoter binding protein-like7 (SPL7) transcription factor function to down-regulate the expression of many Cu-proteins, including Cu/ZnSOD in both plastids and the cytosol, during growth on low Cu. Plants contain the Cu Chaperone for SOD (CCS) that delivers Cu to Cu/ZnSODs, and, in Arabidopsis, both cytosolic and plastidic CCS versions are encoded by one gene. In this study, we demonstrate that Arabiclopsis CCS transcript levels are regulated by Cu, mediated by microRNA 398 that was not previously predicted to target CCS. The microRNA target site is conserved in CCS of Oryza sativa. The data suggest that Cu-regulated microRNAs may have more mRNA targets than was previously predicted. A CCS null mutant has no measurable SOD activity in the chloroplast and cytosol, indicating an absolute requirement for CCS. When the CCS null mutant was grown on high Cu media, it lacked both Fe superoxide dismutase (FeSOD) and Cu/ZnSOD activity. However, this did not lead to a visual phenotype and no photosynthetic deficiencies were detected, even after high light stress. These results indicate that Cu/ZnSOD is not a pivotal component of the photosynthetic anti-oxidant system during growth in laboratory conditions.展开更多
Chronic hyperglycemia statue noticed in diabetes mellitus favors the manifestation of oxidative stress by increasing the production of reactive oxygen species and/or by reducing the antioxidant defense system activity...Chronic hyperglycemia statue noticed in diabetes mellitus favors the manifestation of oxidative stress by increasing the production of reactive oxygen species and/or by reducing the antioxidant defense system activity.Zinc plays an important role in antioxidant defense in type2 diabetic patients by notably acting as a cofactor of the superoxide dismutase enzyme,by modulating the glutathione metabolism and metallothionein expression,by competing with iron and copper in the cell membrane and by inhibiting nicotinamide adenine dinucleotide phosphate-oxidase enzyme.Zinc also improves the oxidative stress in these patients by reducing chronic hyperglycemia.It indeed promotes phosphorylation of insulin receptors by enhancing transport of glucose into cells.However,several studies reveal changes in zinc metabolism in individuals with type 2 diabetes mellitus and controversies remain regarding the effect of zinc supplementation in the improvement of oxidative stress in these patients.Faced with the serious challenge of the metabolic disorders related to oxidative stress in diabetes along with the importance of antioxidant nutrients in the control of this disease,new studies may contribute to improve our understanding of the role played by zinc against oxidative stress and its connection with type 2 diabetes mellitus prognosis.This could serve as a prelude to the development of prevention strategies and treatment of disorders associated with this chronic disease.展开更多
Jasmonates are class of plant growth regulators act as signal molecule that intercede various components in physiological and metabolic regulation, stress responses and possibly communication through signal transducti...Jasmonates are class of plant growth regulators act as signal molecule that intercede various components in physiological and metabolic regulation, stress responses and possibly communication through signal transduction. Oxidative stress due to heavy metal exposure stimulates synthesis and activity of antioxidant metabolites and enhances antioxidant enzyme activities that could protect plant tissues. The aim of this study was to investigate the exogenous effect of JA at seed level which can transduce throughout seedling growth and regulate antioxidant activities such as superoxide dismutase (SOD;EC 1.15.1.1) and guaiacol peroxidase (POD;EC 1.11.1.7) in 12 days old seedlings of pigeon pea (Cajanus cajan (L.) Millsp.) in presence and/or absence of copper. The activity of SOD and POD increased significantly in presence of Cu2+ after seed priming with JA. JA also helps in chlorophyll and carotenoid accumulation and neutralizes the toxic effect of Cu2+ on seedlings. This is the first report of JA effect on photosynthetic pigment accumulation and H2O2 mitigating enzymes i.e. SOD and POD and it could be recommended that seed priming with JA help in ameliorating toxic effect of Cu2+.展开更多
A novel copper(Ⅱ) complex derived from 1,4,7-triazacyclononane[CuL]_2(PF_6)_3×MeCN×H_2 O was synthesized and crystallographically characterized {L = 1,4-bis(2-carbamoylethyl)-7-benzimidazole-2-yl-meth...A novel copper(Ⅱ) complex derived from 1,4,7-triazacyclononane[CuL]_2(PF_6)_3×MeCN×H_2 O was synthesized and crystallographically characterized {L = 1,4-bis(2-carbamoylethyl)-7-benzimidazole-2-yl-methyl-1,4,7-triazacyclononane}. It crystallizes in triclinic, space group P1, with a = 13.2425(13), b = 14.0807(15), c = 17.6798(18), α = 86.296(2), β = 72.773(2), γ= 68.905(2)o, V = 2934.5(5)A^3, Z = 2, D_c = 1.611 g/m^3, F(000) = 1456, M_r = 1423.09, m = 0.920 mm^-1. The final R = 0.0671 and wR = 0.1874 for 6501 observed reflections with I 〉 2σ(I). The structural analysis shows that the complex cation([CuL]_2^3+) was formed by two complex cations, namely([CuL^3]^2+) and [CuL_(-H)~3]~+) through a hydrogen bond. In each complex cation, the Cu(Ⅱ) lies in a distorted square pyramidal geometry. The redox behavior was studied by cyclic voltammetry(CV) in aqueous solution which indicates a reversible one electron redox reaction. The result of UV absorption, ethidium bromide(EB) fluorescence spectra indicated that the complex binds to CT-DNA in an intercalative mode. Superoxide dismutase(SOD) activity of the complex was determined by photoreduction of NBT, and the value of IC_(50) is 5.22 μmol·L^-1.展开更多
Zinc supplementation can help maintain learning and memory function in rodents. In this study, we hypothesized that zinc supplementation could antagonize the neurotoxicity induced by aluminum in rats. Animals were fed...Zinc supplementation can help maintain learning and memory function in rodents. In this study, we hypothesized that zinc supplementation could antagonize the neurotoxicity induced by aluminum in rats. Animals were fed a diet containing different doses of zinc (50, 100, 200 mg/kg) for 9 weeks, and orally administered aluminum chloride (300 mg/kg daily) from the third week for 7 consecutive weeks. Open-field behavioral test results showed that the number of rearings in the group given the 100 mg/kg zinc supplement was significantly increased compared with the group given the 50 mg/kg zinc supplement. Malondialdehyde content in the cerebrum was significantly decreased, while dopamine and 5-hydroxytryptamine levels were increased in the groups given the diet sup- plemented with 100 and 200 mg/kg zinc, compared with the group given the diet supplemented with 50 mg/kg zinc. The acetylcholinesterase activity in the cerebrum was significantly decreased in the group given the 100 mg/kg zinc supplement. Hematoxylin-eosin staining revealed evident patho- logical damage in the hippocampus of rats in the group given the diet supplemented with 50 mg/kg zinc, but the damage was attenuated in the groups given the diet supplemented with 100 and 200 mg/kg zinc. Our findings suggest that zinc is a potential neuroprotective agent against alumi-num-induced neurotoxicity in rats, and the optimal dosages are 100 and 200 mg/kg.展开更多
The Zinc complex of N, N-bis (benzimidazol 2-yl-methy])amine has been synthesized and its crystal structure determined by X-ray diffraction method. The structure features of the complex are described.
文摘In this study, a gene encoding a superoxide dismutase (SOD) was cloned from senescent leaves of cotton (Gossypium hirsutum), and its expressing profile was analyzed. The gene was cloned by rapid amplification of cDNA ends (RACE) method. Northern blotting was used to show the profile of the gene expression, and the enzyme activity was mensurated by NBT deoxidization method in different growth periods. The full length of a gene of cytosolic copper/zinc superoxide dismutase (Cu/Zn-SOD) was isolated from cotton (GenBank Accession Number: DQ445093). The sequence of cDNA contained 682 bp, the opening reading frame 456 bp, and encoded polypeptide 152 amino acids with the predicted molecular mass of 15.03 kD and theoretical pI of 6.09. The amino acid sequence was similar with the other plants from 82 to 87%. Southern blotting showed that the gene had different number of copies in different cotton species. Northern blotting suggested that the gene had different expression in different tissues and development stages. The enzyme activity was the highest in peak flowering stage. The cotton cytosolic (Cu/Zn-SOD) had lower copies in the upland cotton. The copper/zinc superoxide dismutase mRNA expressing level showed regular changing in the whole development stages; it was lower in the former stages, higher in latter stages and the highest at the peak flowering stage. The curve of the copper/zinc superoxide dismutase mRNA expressing level was consistent with that of the Cu/Zn-SOD enzyme activity. The copper/zinc superoxide dismutase mRNA expressing levels of different organs showed that the gene was higher in the root, leaf, and lower in the flower.
文摘In this experiment,the cancer tissues and cells,Which were derived from Lewis lung cancer and A549 lung Cancer cell line,were respectively divided into four groups and zinc, manganese and selenium were respectively added to the medium for 24 hours. The superoxide dismutase activity in the tissues and the cells was estimated. It was found that the SOD activity was enhanced by zinc and manganese and the effect of zinc on SOD activity was superior to that of manganese. We supposed that the enhance of the SOD activity was relative to the activation of the SOD apoenzymes. This experimental result indicated that the inhibitory effect of zinc and manganese on carcinogenesis was achieved by SOD and the elements might be considered a SOD activator.
基金The Guangdong Province Education Department under contract No.GCZX-A0909the Guangdong Province Ocean and Fisheries Science & Technology Extension Project under contract No.20120980+1 种基金the Guangdong Province Industry-University-Science Partnership Project under contract No.20110908the Science&Technology Project of Huaiyin Normal University under contract No.WH0031
文摘Superoxide dismutase(SOD) is a crucial antioxidant enzyme playing the first defense line in antioxidant pathways against reactive oxygen species in various organisms including marine invertebrates. There exist mainly two specific forms, Cu/Zn-SOD(SOD1) and Mn-SOD(SOD2), in eukaryotes. SODs are known to be concurrently modulated by a variety of environmental stressors. By using central composite experimental design and response surface method, the joint effects of water temperature(18–34°C) and copper ion concentration(0.1–1.5 mg/L) on the total SOD activity in the digestive gland of Crassostrea ariakensis were studied. The results showed that the linear effect of temperature was highly significant(P〈0.01), the quadratic effect of temperature was significant(P〈0.05); the linear effect of copper ion concentration was not significant(P〉0.05), while the quadratic effect of copper ion concentration was highly significant(P〈0.01); the interactive effect of temperature and copper ion concentration was not significant(P〉0.05); the effect of temperature was greater than that of copper ion concentration. The model equation of digestive gland SOD enzyme activity towards the two factors of interest was established, with R2 and predictive R2 as high as 0.961 6 and 0.820 7, respectively, suggesting that the goodness-offit to experimental data be very satisfactory, and could be applied to prediction of digestive gland SOD activity in C. ariakensis under the conditions of the experiment. Our results would be conducive to addressing the health of aquatic animals and/or to detecting environmental problems by taking SOD as a potential bioindicator.
基金This work was supported by the United States National Science Foundation (grants NSF-IBN-0418993 and NSF IOS-0847442 to M.P.).ACKNOWLEDGMENTS We thank Drs Iwona Adamska, Alice Barkan, Daniel Kliebenstein, and Henrik Sheller for generous antibody gifts. We would like to thank Dr Bonnie Bartel for the generous microRNA mutant seed gift. No conflict of interest declared.
文摘Copper (Cu) is an important mineral nutrient found in chloroplasts as a cofactor associated with plastocyanin and Cu/Zn superoxide dismutase (Cu/ZnSOD). Superoxide dismutases are metallo-enzymes found in most oxygenic organisms with proposed roles in reducing oxidative stress. Several recent studies in Arabidopsis have shown that microRNAs and a SQUAMOSA promoter binding protein-like7 (SPL7) transcription factor function to down-regulate the expression of many Cu-proteins, including Cu/ZnSOD in both plastids and the cytosol, during growth on low Cu. Plants contain the Cu Chaperone for SOD (CCS) that delivers Cu to Cu/ZnSODs, and, in Arabidopsis, both cytosolic and plastidic CCS versions are encoded by one gene. In this study, we demonstrate that Arabiclopsis CCS transcript levels are regulated by Cu, mediated by microRNA 398 that was not previously predicted to target CCS. The microRNA target site is conserved in CCS of Oryza sativa. The data suggest that Cu-regulated microRNAs may have more mRNA targets than was previously predicted. A CCS null mutant has no measurable SOD activity in the chloroplast and cytosol, indicating an absolute requirement for CCS. When the CCS null mutant was grown on high Cu media, it lacked both Fe superoxide dismutase (FeSOD) and Cu/ZnSOD activity. However, this did not lead to a visual phenotype and no photosynthetic deficiencies were detected, even after high light stress. These results indicate that Cu/ZnSOD is not a pivotal component of the photosynthetic anti-oxidant system during growth in laboratory conditions.
文摘Chronic hyperglycemia statue noticed in diabetes mellitus favors the manifestation of oxidative stress by increasing the production of reactive oxygen species and/or by reducing the antioxidant defense system activity.Zinc plays an important role in antioxidant defense in type2 diabetic patients by notably acting as a cofactor of the superoxide dismutase enzyme,by modulating the glutathione metabolism and metallothionein expression,by competing with iron and copper in the cell membrane and by inhibiting nicotinamide adenine dinucleotide phosphate-oxidase enzyme.Zinc also improves the oxidative stress in these patients by reducing chronic hyperglycemia.It indeed promotes phosphorylation of insulin receptors by enhancing transport of glucose into cells.However,several studies reveal changes in zinc metabolism in individuals with type 2 diabetes mellitus and controversies remain regarding the effect of zinc supplementation in the improvement of oxidative stress in these patients.Faced with the serious challenge of the metabolic disorders related to oxidative stress in diabetes along with the importance of antioxidant nutrients in the control of this disease,new studies may contribute to improve our understanding of the role played by zinc against oxidative stress and its connection with type 2 diabetes mellitus prognosis.This could serve as a prelude to the development of prevention strategies and treatment of disorders associated with this chronic disease.
文摘Jasmonates are class of plant growth regulators act as signal molecule that intercede various components in physiological and metabolic regulation, stress responses and possibly communication through signal transduction. Oxidative stress due to heavy metal exposure stimulates synthesis and activity of antioxidant metabolites and enhances antioxidant enzyme activities that could protect plant tissues. The aim of this study was to investigate the exogenous effect of JA at seed level which can transduce throughout seedling growth and regulate antioxidant activities such as superoxide dismutase (SOD;EC 1.15.1.1) and guaiacol peroxidase (POD;EC 1.11.1.7) in 12 days old seedlings of pigeon pea (Cajanus cajan (L.) Millsp.) in presence and/or absence of copper. The activity of SOD and POD increased significantly in presence of Cu2+ after seed priming with JA. JA also helps in chlorophyll and carotenoid accumulation and neutralizes the toxic effect of Cu2+ on seedlings. This is the first report of JA effect on photosynthetic pigment accumulation and H2O2 mitigating enzymes i.e. SOD and POD and it could be recommended that seed priming with JA help in ameliorating toxic effect of Cu2+.
基金supported by the Natural Science Foundation of Hubei Province(2014CFB410)
文摘A novel copper(Ⅱ) complex derived from 1,4,7-triazacyclononane[CuL]_2(PF_6)_3×MeCN×H_2 O was synthesized and crystallographically characterized {L = 1,4-bis(2-carbamoylethyl)-7-benzimidazole-2-yl-methyl-1,4,7-triazacyclononane}. It crystallizes in triclinic, space group P1, with a = 13.2425(13), b = 14.0807(15), c = 17.6798(18), α = 86.296(2), β = 72.773(2), γ= 68.905(2)o, V = 2934.5(5)A^3, Z = 2, D_c = 1.611 g/m^3, F(000) = 1456, M_r = 1423.09, m = 0.920 mm^-1. The final R = 0.0671 and wR = 0.1874 for 6501 observed reflections with I 〉 2σ(I). The structural analysis shows that the complex cation([CuL]_2^3+) was formed by two complex cations, namely([CuL^3]^2+) and [CuL_(-H)~3]~+) through a hydrogen bond. In each complex cation, the Cu(Ⅱ) lies in a distorted square pyramidal geometry. The redox behavior was studied by cyclic voltammetry(CV) in aqueous solution which indicates a reversible one electron redox reaction. The result of UV absorption, ethidium bromide(EB) fluorescence spectra indicated that the complex binds to CT-DNA in an intercalative mode. Superoxide dismutase(SOD) activity of the complex was determined by photoreduction of NBT, and the value of IC_(50) is 5.22 μmol·L^-1.
基金was funded by the National Nature Science Foundation of China,No.30872098,30901185the National Nature Science Foundation of Tianjin,No.05YFJMJC 05500the Medical Science and Technology Project of Chinese PLA,No.13QNP069.
文摘Zinc supplementation can help maintain learning and memory function in rodents. In this study, we hypothesized that zinc supplementation could antagonize the neurotoxicity induced by aluminum in rats. Animals were fed a diet containing different doses of zinc (50, 100, 200 mg/kg) for 9 weeks, and orally administered aluminum chloride (300 mg/kg daily) from the third week for 7 consecutive weeks. Open-field behavioral test results showed that the number of rearings in the group given the 100 mg/kg zinc supplement was significantly increased compared with the group given the 50 mg/kg zinc supplement. Malondialdehyde content in the cerebrum was significantly decreased, while dopamine and 5-hydroxytryptamine levels were increased in the groups given the diet sup- plemented with 100 and 200 mg/kg zinc, compared with the group given the diet supplemented with 50 mg/kg zinc. The acetylcholinesterase activity in the cerebrum was significantly decreased in the group given the 100 mg/kg zinc supplement. Hematoxylin-eosin staining revealed evident patho- logical damage in the hippocampus of rats in the group given the diet supplemented with 50 mg/kg zinc, but the damage was attenuated in the groups given the diet supplemented with 100 and 200 mg/kg zinc. Our findings suggest that zinc is a potential neuroprotective agent against alumi-num-induced neurotoxicity in rats, and the optimal dosages are 100 and 200 mg/kg.
基金the Key Discipline Fund of Tianjin Higher Education.
文摘The Zinc complex of N, N-bis (benzimidazol 2-yl-methy])amine has been synthesized and its crystal structure determined by X-ray diffraction method. The structure features of the complex are described.