REE and other trace elements in the altered marbles, massive skarns and ores, as well as garnet and quartz were determined in order to examine the behaviors of trace elements during hydrothermal alteration. It is demo...REE and other trace elements in the altered marbles, massive skarns and ores, as well as garnet and quartz were determined in order to examine the behaviors of trace elements during hydrothermal alteration. It is demonstrated that the high-field-strength (HFS) elements Zr, Hf, Th and Nb were immobile while other trace elements were mobile during the formation of skarns and related deposits. REE and ore-forming elements such as Cu and Ag in hydrothermally-altered marbles and skarns were provided primarily by hydrothermal fluids. In the direction transverse of the strata, the more deeply the marbles were altered, the higher the total REE abundance and the larger the negative Eu anomalies would be. The chondrite-normalized REE patterns of skarns are similar to those of the marbles, but the former are distinguished by much higher REE contents and more remarkable negative Eu anomalies. Those patterns were apparently not inherited from the marble protolith, but were controlled by garnets, which were determined by the hydrothermal solutions involved in the infiltration metasomatism. The hydrothermal fluids are characterized by having slightly right-hand dipping REE patterns, being enriched in LREE and having strongly negative Eu anomalies. The uptake of REE from hydrothermal fluids during the growth of garnet crystals resulted in the garnets having similar REE patterns to the hydrothermal fluids. Based on the spatial variation of REE in skarns and the structures of the hosting strata, we can get a better understanding of the transport path and pattern of the fluids involved in the formation of skarns and their related deposits. REE geochemistry investigation can help elucidate the genesis of skarns and skarn-related deposits.展开更多
The Baoshan Cu–Pb–Zn deposit, located in the central part of the Qin–Hang belt in South China, is closely related to the granodiorite-porphyry. However, the characteristics and the source of the ore-forming fluid a...The Baoshan Cu–Pb–Zn deposit, located in the central part of the Qin–Hang belt in South China, is closely related to the granodiorite-porphyry. However, the characteristics and the source of the ore-forming fluid are still ubiquitous. According to the crosscutting relationships between veinlets and their mineral assemblages, three stages of hydrothermal mineralization in this deposit were previously distinguished. In this contribution, two different colored fluorites from the major sulfide mineralization stage are recognized:(1) green fluorites coexisting with Pb–Zn ores;and(2) violet fluorites coexisting with pyrite ores. Y/Ho ratios verify the green fluorites and violet fluorites were co-genetic. The fluorites display elevated(La/Yb)Nratios, which decrease from 1201 to 5710 for green fluorites to 689–1568 for violet fluorites, indicating that they precipitated at the early hydrothermal sulfide stage,and Pb–Zn ores crystallized earlier than pyrite ores. The similar Tb/La ratios of the fluorites also indicate that they precipitated at an early stage within a short time. From the green fluorites to violet fluorites, the total rare earth element(ΣREE)concentrationsdecreasefrom1052–1680 ppm to 148–350 ppm, indicating that the green fluorites precipitated from a more acidic fluid. The Eu/Eu*ratios increase from 0.17 to 0.30 for green fluorites to0.29–0.48 for violet fluorites, and the Ce/Ce* ratios decrease from 1.08–1.13 to 0.93–1.11, suggesting a gradual increase in oxygen fugacity(fO_(2)) and pH value of the mineralization fluid. Though the fluorites display similar REE patterns to the granodiorite-porphyry and limestone,the ΣREE concentrations of the fluorites are significantly higher than those of limestone and the granodiorite-porphyry, suggesting that an important undetected non-magmatic source is involved to provide sufficient REE for fluorites. The most plausible mechanism is fluid mixing between magma fluid and an undetected non-magmatic fluid.展开更多
The metallogenesis of subvolcanic deposits is controlled by subvolcanic activities. The copper polymetallic deposits are genetically related to intermediate-acid rocks, and the silver polymetallic deposits are more cl...The metallogenesis of subvolcanic deposits is controlled by subvolcanic activities. The copper polymetallic deposits are genetically related to intermediate-acid rocks, and the silver polymetallic deposits are more closely related to acid rocks. The abundance of Cu is relatively high in the intermediate-acid rocks and subvolcanic rocks, whereas the abundances of Pb, An and Ag are high in acid rocks, indicating rich ore-forming elements in original magmas. The study of REEs shows that the magmatic type related to copper deposits is the syntectic type, and that related to silver polymetallic deposits is mainly the re-melting type. The deposits were formed under medium-low temperatures and low salinity. The metallogenic times were the late stage of the early Yanshanian or the late Yanshanian, dating 78–147 Ma.展开更多
1 Introduction 1The Sanjiang region in SE Tibet Plateau and NW Yunnan is known to have formed by amalgamation of Gongwanaderived continental blocks and arc terranes as a result of oceanic subduction followed by contin...1 Introduction 1The Sanjiang region in SE Tibet Plateau and NW Yunnan is known to have formed by amalgamation of Gongwanaderived continental blocks and arc terranes as a result of oceanic subduction followed by continental展开更多
The geotectonic setting refers to the three-dimensional space and relatedevents based on which a metallogenic system is formed and an ore-forming process takes place. Thispaper discusses the tectonic evolution of the ...The geotectonic setting refers to the three-dimensional space and relatedevents based on which a metallogenic system is formed and an ore-forming process takes place. Thispaper discusses the tectonic evolution of the southwestern margin of the North China paleocontinentand related geotectonic settings in which large or superlarge deposits are formed. Emphasis is puton the geodynamic conditions of the Jinchuan nickel-copper deposit, the Baiyin copper-polymetallicdeposit and the Hanshan gold deposit. It is significant that the three deposits occur together as a'trinity' on the same paleocontinental margin. The Jinchuan nickel-copper deposit was formed duringthe early stage of rifting of the paleocontinental margin; the Baiyin copper-polymetallic depositwas formed during the splitting stage of a continental-margin arc. The continental-margin arcspitting resulted in an 'island arc rift' in the early stage of evolution. The Hanshan gold depositwas formed within the Altun sinistral strike-slip fault system and its provenance is the'intraoceanic arc' volcanic rocks.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos:49625304 and 49633120)the Ministry of Land and Resources of China(Grant No.2000401)the Ministry of Science and Technology of China through a National Climbing Project 95-P-39.
文摘REE and other trace elements in the altered marbles, massive skarns and ores, as well as garnet and quartz were determined in order to examine the behaviors of trace elements during hydrothermal alteration. It is demonstrated that the high-field-strength (HFS) elements Zr, Hf, Th and Nb were immobile while other trace elements were mobile during the formation of skarns and related deposits. REE and ore-forming elements such as Cu and Ag in hydrothermally-altered marbles and skarns were provided primarily by hydrothermal fluids. In the direction transverse of the strata, the more deeply the marbles were altered, the higher the total REE abundance and the larger the negative Eu anomalies would be. The chondrite-normalized REE patterns of skarns are similar to those of the marbles, but the former are distinguished by much higher REE contents and more remarkable negative Eu anomalies. Those patterns were apparently not inherited from the marble protolith, but were controlled by garnets, which were determined by the hydrothermal solutions involved in the infiltration metasomatism. The hydrothermal fluids are characterized by having slightly right-hand dipping REE patterns, being enriched in LREE and having strongly negative Eu anomalies. The uptake of REE from hydrothermal fluids during the growth of garnet crystals resulted in the garnets having similar REE patterns to the hydrothermal fluids. Based on the spatial variation of REE in skarns and the structures of the hosting strata, we can get a better understanding of the transport path and pattern of the fluids involved in the formation of skarns and their related deposits. REE geochemistry investigation can help elucidate the genesis of skarns and skarn-related deposits.
基金financially supported by the National Natural Science Foundation of China(No.42102079)the Natural Science Foundation of Sichuan Province(No.22NSFSC2765)+1 种基金State Key Laboratory of Ore Deposit Geochemistry Key Laboratory Open Project Fund(No.201804)the Southwest University of Science and Technology Doctoral Fund(No.16zx7132)。
文摘The Baoshan Cu–Pb–Zn deposit, located in the central part of the Qin–Hang belt in South China, is closely related to the granodiorite-porphyry. However, the characteristics and the source of the ore-forming fluid are still ubiquitous. According to the crosscutting relationships between veinlets and their mineral assemblages, three stages of hydrothermal mineralization in this deposit were previously distinguished. In this contribution, two different colored fluorites from the major sulfide mineralization stage are recognized:(1) green fluorites coexisting with Pb–Zn ores;and(2) violet fluorites coexisting with pyrite ores. Y/Ho ratios verify the green fluorites and violet fluorites were co-genetic. The fluorites display elevated(La/Yb)Nratios, which decrease from 1201 to 5710 for green fluorites to 689–1568 for violet fluorites, indicating that they precipitated at the early hydrothermal sulfide stage,and Pb–Zn ores crystallized earlier than pyrite ores. The similar Tb/La ratios of the fluorites also indicate that they precipitated at an early stage within a short time. From the green fluorites to violet fluorites, the total rare earth element(ΣREE)concentrationsdecreasefrom1052–1680 ppm to 148–350 ppm, indicating that the green fluorites precipitated from a more acidic fluid. The Eu/Eu*ratios increase from 0.17 to 0.30 for green fluorites to0.29–0.48 for violet fluorites, and the Ce/Ce* ratios decrease from 1.08–1.13 to 0.93–1.11, suggesting a gradual increase in oxygen fugacity(fO_(2)) and pH value of the mineralization fluid. Though the fluorites display similar REE patterns to the granodiorite-porphyry and limestone,the ΣREE concentrations of the fluorites are significantly higher than those of limestone and the granodiorite-porphyry, suggesting that an important undetected non-magmatic source is involved to provide sufficient REE for fluorites. The most plausible mechanism is fluid mixing between magma fluid and an undetected non-magmatic fluid.
文摘The metallogenesis of subvolcanic deposits is controlled by subvolcanic activities. The copper polymetallic deposits are genetically related to intermediate-acid rocks, and the silver polymetallic deposits are more closely related to acid rocks. The abundance of Cu is relatively high in the intermediate-acid rocks and subvolcanic rocks, whereas the abundances of Pb, An and Ag are high in acid rocks, indicating rich ore-forming elements in original magmas. The study of REEs shows that the magmatic type related to copper deposits is the syntectic type, and that related to silver polymetallic deposits is mainly the re-melting type. The deposits were formed under medium-low temperatures and low salinity. The metallogenic times were the late stage of the early Yanshanian or the late Yanshanian, dating 78–147 Ma.
基金financially supported by the Open Funds of Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry (Grant No. GLMPM-009)the Open Funds of State Key Laboratory of Ore Deposit Geochemistry (Grant No. 201505)
文摘1 Introduction 1The Sanjiang region in SE Tibet Plateau and NW Yunnan is known to have formed by amalgamation of Gongwanaderived continental blocks and arc terranes as a result of oceanic subduction followed by continental
文摘The geotectonic setting refers to the three-dimensional space and relatedevents based on which a metallogenic system is formed and an ore-forming process takes place. Thispaper discusses the tectonic evolution of the southwestern margin of the North China paleocontinentand related geotectonic settings in which large or superlarge deposits are formed. Emphasis is puton the geodynamic conditions of the Jinchuan nickel-copper deposit, the Baiyin copper-polymetallicdeposit and the Hanshan gold deposit. It is significant that the three deposits occur together as a'trinity' on the same paleocontinental margin. The Jinchuan nickel-copper deposit was formed duringthe early stage of rifting of the paleocontinental margin; the Baiyin copper-polymetallic depositwas formed during the splitting stage of a continental-margin arc. The continental-margin arcspitting resulted in an 'island arc rift' in the early stage of evolution. The Hanshan gold depositwas formed within the Altun sinistral strike-slip fault system and its provenance is the'intraoceanic arc' volcanic rocks.
基金This study is supported jointly by the funds for Supporting Project for State Science and Technology (No.2006BAB01B09)the Natural Science Foundation of Yunnan Province (No.99D0003G)+1 种基金the Collaboration Program sponsored by the colleges and universities of Yunnan Province (No. 2002UBBEA05B004)the funds for Program for New Century Excellent Talents in University (No.NCET- 04- 917).