The Beishan rift zone in Xinjiang Uygur Autonomous Region was formed due to strong activities of faults on the basement of the Tarim continental crust.Despite the fact that many geological research results of the rift...The Beishan rift zone in Xinjiang Uygur Autonomous Region was formed due to strong activities of faults on the basement of the Tarim continental crust.Despite the fact that many geological research results of the rift zone have been achieved,only a few studies have been conducted on its regional geophysical characteristics.In this paper,the gravity and magnetic anomalies of the rift zone were highlighted through specific data processing of 1∶50000 high-precision aeromagnetic data and gravity data with a grid spacing of 2 km×2 km.Based on this,the geophysical evidence for the scope and internal structures of the Beishan rift zone was obtained for the first time.The distinct characteristics of magnetic and gravity fields in the areas to the north and south of the Beishan rift zone reveal that deep faults exist between the Beishan rift zone and the geological units on the southern and northern sides.Furthermore,the faults on the two areas contain the bidirectional thrusts and have flower-shaped structures according to the characteristics of the magnetic and gravity fields.The Beishan rift zone can be divided into two tectonomagmatic zones,namely the Zhongposhan-Bijiashan-Cihai-Baishanliang zone(the northern zone)and the Bayiquan-Qixin-Baishan zone(the southern zone).The northern zone can be further subdivided into three comet-shaped anomaly groups(tectonomagmatic areas),while the southern zone can be further subdivided into two tectonomagmatic areas.According to the characteristics of aeromagnetic anomalies and gravity field,19 mafic-ultramafic complexes were delineated.The known Pobei,Hongshishan,and Qixin complexes are all located within the inferred complexes,with estimates of total explored resources of Ni,Cu,and Au of 3×10^(6) t,10×10^(3) t and 10 t,respectively.The prospecting of high-grade copper-nickel deposits should focus on the periphery and deep parts of the known and inferred mafic-ultramafic complexes.Among them,the peripheral strata of the complexes specifically have great prospecting potential of large-scale high-grade copper-nickel deposits of magma injection type.Finally,this paper analyzed the application effects of the rapid airborne-ground-drilling synergetic exploration method in the prospecting of copper-nickel deposits in Qixin,Beishan,Xinjiang,which will provide references for further exploration of copper-nickel deposits in Beishan area,Xinjiang.展开更多
The data of Fe3+ /Fe2+ show that the lowest annual air temperature of the Lushan,Huangshan and Tianmu mountains was not below 0℃, therefore, glacier couldn’t develop in there regions. According to palaeomagnetic tes...The data of Fe3+ /Fe2+ show that the lowest annual air temperature of the Lushan,Huangshan and Tianmu mountains was not below 0℃, therefore, glacier couldn’t develop in there regions. According to palaeomagnetic test combined with the phenomenon of reticulate pattern ground and lithologic identification, the authors elaborate that the “Poyang moraine” is mainly the fluvial sediments of the early period of the Middle Pleistocene. It was formed by transposition of the ancient Ganjiang River under the humid hot climate. For CM image, the Dajiaochang profile of the Lushan Mountain is very similar to periglacial and the debris flow deposits, but the profile of Jiangpochang and Yaoshaling have many kinds of geneses, i. e., debris flow, water debris flow and alluvial etc. In the south piedmont of the Huangshan Mountain, slope gravity and slope seasonal running water transportantion are mainly deposit factors. In the “glacial varve” of the Denglongqiao profile of the Tianmu Mountain, its CaO and Na2O content is lower than the nonglacial varve, the fact shows that it has the features of the violent leaching, weathering and nonglacial action.展开更多
In the early 1980's, the author proposed his view that copper-nickel sulphide deposts are of ore magma origin. For more than ten years, this view has aroused attention of his colleagues at home and abroad. In this...In the early 1980's, the author proposed his view that copper-nickel sulphide deposts are of ore magma origin. For more than ten years, this view has aroused attention of his colleagues at home and abroad. In this paper an attempt is made to deal with the genetic model for ore magma of copper-nickel sulphide deposits in more details on the basis of geological, geochemical, petrophysico - chemical and thermodynamic studies of the Chibaisong copper-nickel sulphide deposit in the Changbai Mountains, Jilin province.展开更多
The platinum-group element geochemistry of rocks and ores from Jinchuan super-large copper-nickel sulfide deposit is systemically studied in this paper. The Cu/Pd mean ratio of Jinchuan intrusion is lower than that of...The platinum-group element geochemistry of rocks and ores from Jinchuan super-large copper-nickel sulfide deposit is systemically studied in this paper. The Cu/Pd mean ratio of Jinchuan intrusion is lower than that of original mantle magma, which indicates that these ultrabasic rocks were crystallized from magma that lost Pd in the form of melting segregation of sulfides. The PGE of the rocks show trend of partial melting, similar to that of mantle peridotite, which shows that magma formation occurs during rock-forming and ore-forming processes. The chondrite normalized PGE patterns of the rocks and ores are well related to each other, which signifies the signatures of multi-episode magmatic intrusion, melting and differentiation in the formation processes of rocks and ores. In addition, analyses about the relation between PGE and S, and study on Re-Os isotopes indicate that few contamination of the crustal substances occurred during the magmatic intrusion and the formation of deposit. However, contamination by crustal substances helps to supply part of the S for the enrichment of PGE. Meanwhile, the hydrothermal process is also advantageous for the enrichment of PGE, especially lbr Pt and Pd, due to deep melting segregation. The characteristic parameters (such as Pt/(Pt+Pd), (Pt+Pd)/(Ru+Ir+Os), Pd/Ir, Cu/(Ni+Cu), and so on.) for platinum-group elements for Jinchuan sulfide copper-nickel deposit show the same features as those for sulfide copper-nickel deposit related to basic magma, which also illustrates its original magma property representative of Mg-high tholeiite. Therefore, it is the marie (not ultramafic) magma that resulted in the formation of the superlarge sulfide copper-nickel deposit enriched in Cu and PGE. To sum up, the geochemical characteristics of platinum-group elements in rocks and ores from Jinchuan copper-nickel sulfide deposit are constrained by the continental rift tectonic environment, the parent magma features, the enriched mantel magma source, the complex metallogenesis and PGE geochemical signatures, and this would be rather significant for the study about the genetic mechanism of copper-nickel sulfide deposits.展开更多
基金supported by the National Key Research and Development Program of China(2017YFC0602206)the projects of the China Geological Survey(DD20160066,DD20190551).
文摘The Beishan rift zone in Xinjiang Uygur Autonomous Region was formed due to strong activities of faults on the basement of the Tarim continental crust.Despite the fact that many geological research results of the rift zone have been achieved,only a few studies have been conducted on its regional geophysical characteristics.In this paper,the gravity and magnetic anomalies of the rift zone were highlighted through specific data processing of 1∶50000 high-precision aeromagnetic data and gravity data with a grid spacing of 2 km×2 km.Based on this,the geophysical evidence for the scope and internal structures of the Beishan rift zone was obtained for the first time.The distinct characteristics of magnetic and gravity fields in the areas to the north and south of the Beishan rift zone reveal that deep faults exist between the Beishan rift zone and the geological units on the southern and northern sides.Furthermore,the faults on the two areas contain the bidirectional thrusts and have flower-shaped structures according to the characteristics of the magnetic and gravity fields.The Beishan rift zone can be divided into two tectonomagmatic zones,namely the Zhongposhan-Bijiashan-Cihai-Baishanliang zone(the northern zone)and the Bayiquan-Qixin-Baishan zone(the southern zone).The northern zone can be further subdivided into three comet-shaped anomaly groups(tectonomagmatic areas),while the southern zone can be further subdivided into two tectonomagmatic areas.According to the characteristics of aeromagnetic anomalies and gravity field,19 mafic-ultramafic complexes were delineated.The known Pobei,Hongshishan,and Qixin complexes are all located within the inferred complexes,with estimates of total explored resources of Ni,Cu,and Au of 3×10^(6) t,10×10^(3) t and 10 t,respectively.The prospecting of high-grade copper-nickel deposits should focus on the periphery and deep parts of the known and inferred mafic-ultramafic complexes.Among them,the peripheral strata of the complexes specifically have great prospecting potential of large-scale high-grade copper-nickel deposits of magma injection type.Finally,this paper analyzed the application effects of the rapid airborne-ground-drilling synergetic exploration method in the prospecting of copper-nickel deposits in Qixin,Beishan,Xinjiang,which will provide references for further exploration of copper-nickel deposits in Beishan area,Xinjiang.
文摘The data of Fe3+ /Fe2+ show that the lowest annual air temperature of the Lushan,Huangshan and Tianmu mountains was not below 0℃, therefore, glacier couldn’t develop in there regions. According to palaeomagnetic test combined with the phenomenon of reticulate pattern ground and lithologic identification, the authors elaborate that the “Poyang moraine” is mainly the fluvial sediments of the early period of the Middle Pleistocene. It was formed by transposition of the ancient Ganjiang River under the humid hot climate. For CM image, the Dajiaochang profile of the Lushan Mountain is very similar to periglacial and the debris flow deposits, but the profile of Jiangpochang and Yaoshaling have many kinds of geneses, i. e., debris flow, water debris flow and alluvial etc. In the south piedmont of the Huangshan Mountain, slope gravity and slope seasonal running water transportantion are mainly deposit factors. In the “glacial varve” of the Denglongqiao profile of the Tianmu Mountain, its CaO and Na2O content is lower than the nonglacial varve, the fact shows that it has the features of the violent leaching, weathering and nonglacial action.
文摘In the early 1980's, the author proposed his view that copper-nickel sulphide deposts are of ore magma origin. For more than ten years, this view has aroused attention of his colleagues at home and abroad. In this paper an attempt is made to deal with the genetic model for ore magma of copper-nickel sulphide deposits in more details on the basis of geological, geochemical, petrophysico - chemical and thermodynamic studies of the Chibaisong copper-nickel sulphide deposit in the Changbai Mountains, Jilin province.
文摘The platinum-group element geochemistry of rocks and ores from Jinchuan super-large copper-nickel sulfide deposit is systemically studied in this paper. The Cu/Pd mean ratio of Jinchuan intrusion is lower than that of original mantle magma, which indicates that these ultrabasic rocks were crystallized from magma that lost Pd in the form of melting segregation of sulfides. The PGE of the rocks show trend of partial melting, similar to that of mantle peridotite, which shows that magma formation occurs during rock-forming and ore-forming processes. The chondrite normalized PGE patterns of the rocks and ores are well related to each other, which signifies the signatures of multi-episode magmatic intrusion, melting and differentiation in the formation processes of rocks and ores. In addition, analyses about the relation between PGE and S, and study on Re-Os isotopes indicate that few contamination of the crustal substances occurred during the magmatic intrusion and the formation of deposit. However, contamination by crustal substances helps to supply part of the S for the enrichment of PGE. Meanwhile, the hydrothermal process is also advantageous for the enrichment of PGE, especially lbr Pt and Pd, due to deep melting segregation. The characteristic parameters (such as Pt/(Pt+Pd), (Pt+Pd)/(Ru+Ir+Os), Pd/Ir, Cu/(Ni+Cu), and so on.) for platinum-group elements for Jinchuan sulfide copper-nickel deposit show the same features as those for sulfide copper-nickel deposit related to basic magma, which also illustrates its original magma property representative of Mg-high tholeiite. Therefore, it is the marie (not ultramafic) magma that resulted in the formation of the superlarge sulfide copper-nickel deposit enriched in Cu and PGE. To sum up, the geochemical characteristics of platinum-group elements in rocks and ores from Jinchuan copper-nickel sulfide deposit are constrained by the continental rift tectonic environment, the parent magma features, the enriched mantel magma source, the complex metallogenesis and PGE geochemical signatures, and this would be rather significant for the study about the genetic mechanism of copper-nickel sulfide deposits.