To address the issues for assessing and prospecting the replaceable resource of crisis mines, a geological ore-controlling field model and a mineralization distribution field model were proposed from the viewpoint of ...To address the issues for assessing and prospecting the replaceable resource of crisis mines, a geological ore-controlling field model and a mineralization distribution field model were proposed from the viewpoint of field analysis. By dint of solving the field models through transferring the continuous models into the discrete ones, the relationship between the geological ore-controlling effect field and the mineralization distribution field was analyzed, and the quantitative and located parameters were extracted for describing the geological factors controlling mineralization enrichment. The method was applied to the 3-dimensional localization and quantitative prediction for concealed ore bodies in the depths and margins of the Daehang mine in Guangxi, China, and the 3-dimensional distribution models of mineralization indexes and ore-controlling factors such as magmatic rocks, strata, faults, lithology and folds were built. With the methods of statistical analysis and the non-linear programming, the quantitative index set of the geological ore-controlling factors was obtained. In addition, the stereoscopic located and quantitative prediction models were set up by exploring the relationship between the mineralization indexes and the geological ore-controlling factors. So far, some concealed ore bodies with the resource volume of a medium-sized mineral deposit are found in the deep parts of the Dachang Mine by means of the deep prospecting drills following the prediction results, from which the effectiveness of the predication models and results is proved.展开更多
This paper demonstrates the channels and methods for location prognosis of concealed ore deposits (bodies) in the deep seated and surrounding districts of productive mines in accordance with their special features. Th...This paper demonstrates the channels and methods for location prognosis of concealed ore deposits (bodies) in the deep seated and surrounding districts of productive mines in accordance with their special features. The system frame map is built, from quick exploration in the field to the rapid building of a model indoors. The main research points of location prognosis are also discussed in the paper, which include: 1) integrating the location with the surrounding geological areas, microscopic with macroscopic; 2) analyzing and synthesizing all geological information of different levels, depths and aspects; 3) laying stress on mineralization series; 4) paying attention to the study of the distribution law of ore bodies; 5) introducing the theory of nonlinear dynamics of ore forming processes to ordinary static prognosis; 6) the necessity of the geophysical me thod in recovering information of concealed ore bodies; 7) the combination of all kinds of geology, geophysics, geochemistry and remote sensing methods.展开更多
By analyzing the metallogenic conditions and prospecting marks of F 8 fault belt in Shiujingtun Gold Mine, the geochemical samples were collected along F 8 fault belt and prospecting profile normal to the F 8 fault be...By analyzing the metallogenic conditions and prospecting marks of F 8 fault belt in Shiujingtun Gold Mine, the geochemical samples were collected along F 8 fault belt and prospecting profile normal to the F 8 fault belt. Gold and its indicator elements were tested with X ray fluorescence spectrometry and the content distribution diagram of Au, Ag, Hg and As along the F 8 fault belt was performed. The geochemical primary halo model and the Grey system model of F 8 fault belt are established. With these element distribution features and models, the blind ore bodies in the F 8 fault belt were predicted. Engineering prospect shows that the industrial orebodies have been discovered and the prediction results are dependable.展开更多
A very fast simulated annealing(VFSA) global optimization is used to interpret residual gravity anomaly.Since,VFSA optimization yields a large number of best-fitted models in a vast model space;the nature of uncerta...A very fast simulated annealing(VFSA) global optimization is used to interpret residual gravity anomaly.Since,VFSA optimization yields a large number of best-fitted models in a vast model space;the nature of uncertainty in the interpretation is also examined simultaneously in the present study.The results of VFSA optimization reveal that various parameters show a number of equivalent solutions when shape of the target body is not known and shape factor 'q' is also optimized together with other model parameters.The study reveals that amplitude coefficient k is strongly dependent on shape factor.This shows that there is a multi-model type uncertainty between these two model parameters derived from the analysis of cross-plots.However,the appraised values of shape factor from various VFSA runs clearly indicate whether the subsurface structure is sphere,horizontal or vertical cylinder type structure.Accordingly,the exact shape factor(1.5 for sphere,1.0 for horizontal cylinder and 0.5 for vertical cylinder)is fixed and optimization process is repeated.After fixing the shape factor,analysis of uncertainty and cross-plots shows a well-defined uni-model characteristic.The mean model computed after fixing the shape factor gives the utmost consistent results.Inversion of noise-free and noisy synthetic data as well as field data demonstrates the efficacy of the approach.展开更多
The Jinchuan deposit is hosted by the olivine-rich ultramafic rock body, which is the thirdlargest magmatic sulfide Ni-Cu deposit in the world currently being exploited. Seeking new relaying resources in the deep and ...The Jinchuan deposit is hosted by the olivine-rich ultramafic rock body, which is the thirdlargest magmatic sulfide Ni-Cu deposit in the world currently being exploited. Seeking new relaying resources in the deep and the border of the deposit becomes more and more important. The ore body, ore and geochemistry characteristics of the concealed Cu-rich ore body are researched. Through spatial analysis and comparison with the neighboring II1 main ore body, the mineralization rule of the concealed Cu-rich ore body is summed up. It is also implied that Cu-rich magma may exist between Nirich magma and ore pulp during liquation differentiation in deep-stage chambers, which derives from deep-mantle Hi-MgO basalt magma. It is concluded that the type of ore body has features of both magmatic liquation and late reconstruction action. It has experienced three stages: deep liquation and pulsatory injection of the Cu- and PPGE-rich magma, concentration of tectonic activation, and the later magma hydrothermal superimposition. In addition, the Pb and S isotopes indicate the magma of I6 concealed Cu-rich ore body originates predominantly from mantle; however, it is interfused by minute crust material. Finally, it is inferred that the genesis of the Cu-Ni sulfide deposit is complex and diverse, and the prospect of seeking new deep ore bodies within similar deposits is promising, especially Cu-rich ore bodies.展开更多
1 Geological Background of Minerlization or Geologic Setting The northeast of Yunnan1 Pb-Zn-Ag-Ge polymetallic ore district is an important part of the southwestern margin of the Yangtze block Sichuan-Yunnan-Guizhou
Long-term field monitoring finds that serious surface subsidence can still occur even if the high strength cemented fill method is adopted.Combining the results of numerical simulations with global position system(GPS...Long-term field monitoring finds that serious surface subsidence can still occur even if the high strength cemented fill method is adopted.Combining the results of numerical simulations with global position system(GPS)monitoring,we took a typical filling mining mine with a steeply inclined ore body as an example,and explored its ground subsidence mechanism.The results show that the ground subsidence caused by the mining of steep ore body is characterized by two settlement centers and a significantly uneven spatial distribution,which is visibly different from ground subsidence characteristic of the coal mine.The subsidence on the hanging wall is much larger than that on the footwall,and the settlement center tends to move to the hanging wall with the increase of mining depth.The backfill improves the strength and surrounding rock bearing capacity,which leads to a lag of about 3 years of the subsidence.However,under the actions of continuous and repeated mining disturbances,the supporting effect of the backfill can only reduce the amplitude of the deformation,but it cannot prevent the occurrence of settlement.展开更多
The Manganese deposits of Andhra Pradesh are associated with a thick sequence of Precambrian rocks, belonging to Khondalite and Charnockite groups of Dharwar Supergroup that forms part of 2500 to 3000 m.y. old Eastern...The Manganese deposits of Andhra Pradesh are associated with a thick sequence of Precambrian rocks, belonging to Khondalite and Charnockite groups of Dharwar Supergroup that forms part of 2500 to 3000 m.y. old Eastern Ghat complex of India. The study area is the Manganese deposits of Vizianagram-Visakhapatnam Manganese Belt of Andhra Pradesh. The study area lies about 150 km NE of Visakhapatnam between 18°12′N - 18°30′N and 83°20′E - 83°45′E. The mineralization of Manganese ores is confined to different rock types, belonging to both Khondalite and Charnockite groups, where they are dispersed throughout the country rocks as small lenses, pockets, veins and irregular bodies of varying dimensions. Quartz, garnet, clay, limonite and apatite are the common gangue minerals in the Manganese ores. The presence of quartz, garnet and apatite brings down the grade of the ore. Ferruginous laterite and ochre generally work as capping of the Manganese deposits. The various Manganese ore minerals present in these deposits are indentified as 1) Primary minerals-braunite, bixbyite, vredenburgite, jacobsite and hausmannite, 2) secondary minerals-psilomelane, cryptomelane, hollandite, pyrolusite and wad. The primary ore minerals are considered to be syngenetic and regionally metamorphosed while, the associated secondary ore minerals are formed due to alteration of the primary ores.展开更多
By the study of metallogenetic conditions and ore-controlling factors, the metallogenetic indicators in geology, geochemistry and geophysics about Wulaga gold deposit have been obtained. Using the indicators the blind...By the study of metallogenetic conditions and ore-controlling factors, the metallogenetic indicators in geology, geochemistry and geophysics about Wulaga gold deposit have been obtained. Using the indicators the blind ore bodies have been forecasted in Zhangcaigou area. By drilling check, a gold-bearing ore body with 3 m thickness in an average tenor of 20.4×10 -6 at the depth of 70 m has been found in the forecast area. It shows that the forecast method should be effective.展开更多
THK fluortite in Zhejiang Province is well known. However, the known outcrop mines have been graduallyexhausted by the exploiting over a long time. It has been a task of top priority to explore blind deposits.Study on...THK fluortite in Zhejiang Province is well known. However, the known outcrop mines have been graduallyexhausted by the exploiting over a long time. It has been a task of top priority to explore blind deposits.Study on the vertical zoning model will be very important and useful in the exploration for blind fluoriteore-bodies. 1 Genetic characteristics of fluorite deposits The fluorite deposits in Zhejiang Province are typical vein filling deposits. The minerals forming theores and the alterations of the wall rocks are all relatively simple. Studies show that the ore-forming materials (F and Ca etc. ) mainly come from the Chencai Group metamorphic rocks and the J<sub>3</sub>-K<sub>1</sub> series vol-展开更多
The Xitieshan lead-zinc deposit is located at the northern margin of the Qaidam Basin, Qinghai Province, China, and had developed a complete marine sedimentary-exhalative system. Our preliminary study of ore-forming f...The Xitieshan lead-zinc deposit is located at the northern margin of the Qaidam Basin, Qinghai Province, China, and had developed a complete marine sedimentary-exhalative system. Our preliminary study of ore-forming fluids shows that fluid inclusions in quartz from altered stockwork rocks that represent the pipe facies have a wide range of temperature and salinity. The intense fluid activities are characteristics of the pipe facies of the exhalative system. Fluid inclusions in carbonates near the unstratified ore bodies hosted in the thick-bedded marble which represents vent-proximal facies are large in size and have moderate to high temperatures. They represent unerupted sub-seafloor fluid activity. Fluids in altered stockwork rocks and carbonates have similar H20-NaCI-CO2 system, both belonging to the sedimentary-exhalative system. The fluids migrate from the pipe facies to the unstratified ore bodies. Boiling of the fluids causes the separation of CO2 vapor and liquid H2O. When the fluids migrate into the unconsolidated thick-bedded marble, the escape of CO2, decreasing temperature and pressure as well as some involvement of seawater into the fluids result in the unmixing of fluids with high and low salinity and deposition of ore-forming materials. The two unmixed fluids were trapped in unconsolidated carbonates and the ore-forming materials were deposited in the unconsolidated carbonates to form the sedimentary-exhalative type unstratified ore bodies. The oreforming temperature of unstratified ore bodies is up to high temperature indicating that there is a huge ore-forming potential in its deep.展开更多
Ore dumps are heterogeneous bodies with anisotropic seepage characteristics because of the ore segregation. In an indoor experiment,a dump was constructed with three strata,where the horizontal and vertical seepage ex...Ore dumps are heterogeneous bodies with anisotropic seepage characteristics because of the ore segregation. In an indoor experiment,a dump was constructed with three strata,where the horizontal and vertical seepage experi-ments were carried out. Horizontals flow are regarded as phreatic plan flows without penetration. Its seepage law sati-fies the Dupuit equation. With parallel lay seepage model,the equivalent seepage coefficient in the horizontal flow was obtained and was equivalent to the weighted mean of the seepage coefficient of each stratum. An unsaturated flow ap-peared in the vertical experiment,with a hydraulic gradient of 1. The vertical flow was equivalent to the seepage model that moved in vertical bedding; its equivalent seepage coefficient depended on the stratum with the minimum seepage coefficient. That the experiment showed clear anisotropy in a heterogeneous body was obvious with an anisotropic co-efficient between 63 and 155,which is 25 to 100 times larger than that of a homogeneous body.展开更多
Changchengite occurs in chromite orebodies in dunite and in platinum placer deposits in chromite orebodies nearby. The mineral occurs as massive aggregates or veinlets on margins of iridisite (IrS2) and replaces it. O...Changchengite occurs in chromite orebodies in dunite and in platinum placer deposits in chromite orebodies nearby. The mineral occurs as massive aggregates or veinlets on margins of iridisite (IrS2) and replaces it. Opaque. Lustre metallic. Colour steel-black. Streak black. Hm = 3.7. VHN20= 165 kg/ mm2. Isotropic. Cleavage none. Density 11.96 g/ cm3. Seven electron microprobe analyses give the following mean chemical results (wt. %): S 7.2, Cu 0.3, Te 0.4, Ir 41.2, Pt 2.8 and Bi 47.3 with total 99.1. The simplified formula is IrBiS. The strongest X-ray powder diffraction lines (hkl, d, I) are 210, 2.75 (70); 211, 2.51 (60); 311, 1.860 (100); 440. 1.090 (50) and 600, 1.027 (50). The X-ray powder diffraction pattern is similar to that of mayingite. After the diffraction data are indexed the mineral is determined to be cubic. The space group is P213 with a = 0.6164(4) nm, V = 0.2342 nm3 and Z = 4.展开更多
A detailed investigation on 3D spatial distribution rules of Banded Iron-bearing Formation(BIF) with methods of gravity-magnetic inversion and 3D modeling of iron mine is presented based on the former analysis in the ...A detailed investigation on 3D spatial distribution rules of Banded Iron-bearing Formation(BIF) with methods of gravity-magnetic inversion and 3D modeling of iron mine is presented based on the former analysis in the Anshan-Benxi area.Three dimension spatial distribution types of BIF are concluded as hook-like,tabularlike and "W"-like.BIF was mainly developed in three types of space including(1) the syncline cores,(2)cover coverage area,and(3) the deeper buried area where the range of tectonic uplift is small.The influences of tectonism,magmatic intrusion and uplift-erosion on the spatial distribution shapes of BIF are clarified.展开更多
The source of rare earth elements (REE) ore-forming substances is identified to be extremely distinct from that of iron ores.The Bayan Obo Fe-REE ore deposits were generated by a composite process of both crustal and ...The source of rare earth elements (REE) ore-forming substances is identified to be extremely distinct from that of iron ores.The Bayan Obo Fe-REE ore deposits were generated by a composite process of both crustal and mantle source mineralization.The original iron bodies are of a sedimentary deposit from supergenesis,while the REE ores have been formed by mantle fluid metasomatism superimposed upon the pre-existing iron bodies.It is believed that the REE ore deposit would be controlled by intracontinental hot spot.The H_8 dolomite in mine regions belongs to normal sedimentary carbonate rock,its C and O isotopic composition rules out the possibility comparable with magrnatic carbonatite.The Sm-Nd isochrons of separated REE minerals have shown two REE peak mineralization periods:early-middle Proterozoic (1 700 Ma±480 Ma) and Caledonia (424-402 Ma).展开更多
基金Project(2007CB416608) supported by the National Basic Research Program of ChinaProject(2006BAB01B07) supported by the National Science and Technology Pillar Program during the 11th Five-Year Plan Period
文摘To address the issues for assessing and prospecting the replaceable resource of crisis mines, a geological ore-controlling field model and a mineralization distribution field model were proposed from the viewpoint of field analysis. By dint of solving the field models through transferring the continuous models into the discrete ones, the relationship between the geological ore-controlling effect field and the mineralization distribution field was analyzed, and the quantitative and located parameters were extracted for describing the geological factors controlling mineralization enrichment. The method was applied to the 3-dimensional localization and quantitative prediction for concealed ore bodies in the depths and margins of the Daehang mine in Guangxi, China, and the 3-dimensional distribution models of mineralization indexes and ore-controlling factors such as magmatic rocks, strata, faults, lithology and folds were built. With the methods of statistical analysis and the non-linear programming, the quantitative index set of the geological ore-controlling factors was obtained. In addition, the stereoscopic located and quantitative prediction models were set up by exploring the relationship between the mineralization indexes and the geological ore-controlling factors. So far, some concealed ore bodies with the resource volume of a medium-sized mineral deposit are found in the deep parts of the Dachang Mine by means of the deep prospecting drills following the prediction results, from which the effectiveness of the predication models and results is proved.
文摘This paper demonstrates the channels and methods for location prognosis of concealed ore deposits (bodies) in the deep seated and surrounding districts of productive mines in accordance with their special features. The system frame map is built, from quick exploration in the field to the rapid building of a model indoors. The main research points of location prognosis are also discussed in the paper, which include: 1) integrating the location with the surrounding geological areas, microscopic with macroscopic; 2) analyzing and synthesizing all geological information of different levels, depths and aspects; 3) laying stress on mineralization series; 4) paying attention to the study of the distribution law of ore bodies; 5) introducing the theory of nonlinear dynamics of ore forming processes to ordinary static prognosis; 6) the necessity of the geophysical me thod in recovering information of concealed ore bodies; 7) the combination of all kinds of geology, geophysics, geochemistry and remote sensing methods.
基金TheOutstandingYoungScientistsFoundation !(No496 2 5304)andtheKeyProgramofMinistryofScienceandTechnologyofChina !(No95 pre 3
文摘By analyzing the metallogenic conditions and prospecting marks of F 8 fault belt in Shiujingtun Gold Mine, the geochemical samples were collected along F 8 fault belt and prospecting profile normal to the F 8 fault belt. Gold and its indicator elements were tested with X ray fluorescence spectrometry and the content distribution diagram of Au, Ag, Hg and As along the F 8 fault belt was performed. The geochemical primary halo model and the Grey system model of F 8 fault belt are established. With these element distribution features and models, the blind ore bodies in the F 8 fault belt were predicted. Engineering prospect shows that the industrial orebodies have been discovered and the prediction results are dependable.
文摘A very fast simulated annealing(VFSA) global optimization is used to interpret residual gravity anomaly.Since,VFSA optimization yields a large number of best-fitted models in a vast model space;the nature of uncertainty in the interpretation is also examined simultaneously in the present study.The results of VFSA optimization reveal that various parameters show a number of equivalent solutions when shape of the target body is not known and shape factor 'q' is also optimized together with other model parameters.The study reveals that amplitude coefficient k is strongly dependent on shape factor.This shows that there is a multi-model type uncertainty between these two model parameters derived from the analysis of cross-plots.However,the appraised values of shape factor from various VFSA runs clearly indicate whether the subsurface structure is sphere,horizontal or vertical cylinder type structure.Accordingly,the exact shape factor(1.5 for sphere,1.0 for horizontal cylinder and 0.5 for vertical cylinder)is fixed and optimization process is repeated.After fixing the shape factor,analysis of uncertainty and cross-plots shows a well-defined uni-model characteristic.The mean model computed after fixing the shape factor gives the utmost consistent results.Inversion of noise-free and noisy synthetic data as well as field data demonstrates the efficacy of the approach.
基金supported by the National Science and Technology Support Project of China (No.2006BAB01B08)
文摘The Jinchuan deposit is hosted by the olivine-rich ultramafic rock body, which is the thirdlargest magmatic sulfide Ni-Cu deposit in the world currently being exploited. Seeking new relaying resources in the deep and the border of the deposit becomes more and more important. The ore body, ore and geochemistry characteristics of the concealed Cu-rich ore body are researched. Through spatial analysis and comparison with the neighboring II1 main ore body, the mineralization rule of the concealed Cu-rich ore body is summed up. It is also implied that Cu-rich magma may exist between Nirich magma and ore pulp during liquation differentiation in deep-stage chambers, which derives from deep-mantle Hi-MgO basalt magma. It is concluded that the type of ore body has features of both magmatic liquation and late reconstruction action. It has experienced three stages: deep liquation and pulsatory injection of the Cu- and PPGE-rich magma, concentration of tectonic activation, and the later magma hydrothermal superimposition. In addition, the Pb and S isotopes indicate the magma of I6 concealed Cu-rich ore body originates predominantly from mantle; however, it is interfused by minute crust material. Finally, it is inferred that the genesis of the Cu-Ni sulfide deposit is complex and diverse, and the prospect of seeking new deep ore bodies within similar deposits is promising, especially Cu-rich ore bodies.
文摘1 Geological Background of Minerlization or Geologic Setting The northeast of Yunnan1 Pb-Zn-Ag-Ge polymetallic ore district is an important part of the southwestern margin of the Yangtze block Sichuan-Yunnan-Guizhou
基金support from the National Natural Science Foundation of China(Grant Nos.42072305 and 41831293)。
文摘Long-term field monitoring finds that serious surface subsidence can still occur even if the high strength cemented fill method is adopted.Combining the results of numerical simulations with global position system(GPS)monitoring,we took a typical filling mining mine with a steeply inclined ore body as an example,and explored its ground subsidence mechanism.The results show that the ground subsidence caused by the mining of steep ore body is characterized by two settlement centers and a significantly uneven spatial distribution,which is visibly different from ground subsidence characteristic of the coal mine.The subsidence on the hanging wall is much larger than that on the footwall,and the settlement center tends to move to the hanging wall with the increase of mining depth.The backfill improves the strength and surrounding rock bearing capacity,which leads to a lag of about 3 years of the subsidence.However,under the actions of continuous and repeated mining disturbances,the supporting effect of the backfill can only reduce the amplitude of the deformation,but it cannot prevent the occurrence of settlement.
文摘The Manganese deposits of Andhra Pradesh are associated with a thick sequence of Precambrian rocks, belonging to Khondalite and Charnockite groups of Dharwar Supergroup that forms part of 2500 to 3000 m.y. old Eastern Ghat complex of India. The study area is the Manganese deposits of Vizianagram-Visakhapatnam Manganese Belt of Andhra Pradesh. The study area lies about 150 km NE of Visakhapatnam between 18°12′N - 18°30′N and 83°20′E - 83°45′E. The mineralization of Manganese ores is confined to different rock types, belonging to both Khondalite and Charnockite groups, where they are dispersed throughout the country rocks as small lenses, pockets, veins and irregular bodies of varying dimensions. Quartz, garnet, clay, limonite and apatite are the common gangue minerals in the Manganese ores. The presence of quartz, garnet and apatite brings down the grade of the ore. Ferruginous laterite and ochre generally work as capping of the Manganese deposits. The various Manganese ore minerals present in these deposits are indentified as 1) Primary minerals-braunite, bixbyite, vredenburgite, jacobsite and hausmannite, 2) secondary minerals-psilomelane, cryptomelane, hollandite, pyrolusite and wad. The primary ore minerals are considered to be syngenetic and regionally metamorphosed while, the associated secondary ore minerals are formed due to alteration of the primary ores.
文摘By the study of metallogenetic conditions and ore-controlling factors, the metallogenetic indicators in geology, geochemistry and geophysics about Wulaga gold deposit have been obtained. Using the indicators the blind ore bodies have been forecasted in Zhangcaigou area. By drilling check, a gold-bearing ore body with 3 m thickness in an average tenor of 20.4×10 -6 at the depth of 70 m has been found in the forecast area. It shows that the forecast method should be effective.
文摘THK fluortite in Zhejiang Province is well known. However, the known outcrop mines have been graduallyexhausted by the exploiting over a long time. It has been a task of top priority to explore blind deposits.Study on the vertical zoning model will be very important and useful in the exploration for blind fluoriteore-bodies. 1 Genetic characteristics of fluorite deposits The fluorite deposits in Zhejiang Province are typical vein filling deposits. The minerals forming theores and the alterations of the wall rocks are all relatively simple. Studies show that the ore-forming materials (F and Ca etc. ) mainly come from the Chencai Group metamorphic rocks and the J<sub>3</sub>-K<sub>1</sub> series vol-
基金This research is supported by the National Natural Science Foundation of China (No. 40672061) ; 'National Science Support Plan Program' (2006BAB01A06) ; 'National Basic Research Program of China' (No.2007CB411304 No. 2001 CB409806).
文摘The Xitieshan lead-zinc deposit is located at the northern margin of the Qaidam Basin, Qinghai Province, China, and had developed a complete marine sedimentary-exhalative system. Our preliminary study of ore-forming fluids shows that fluid inclusions in quartz from altered stockwork rocks that represent the pipe facies have a wide range of temperature and salinity. The intense fluid activities are characteristics of the pipe facies of the exhalative system. Fluid inclusions in carbonates near the unstratified ore bodies hosted in the thick-bedded marble which represents vent-proximal facies are large in size and have moderate to high temperatures. They represent unerupted sub-seafloor fluid activity. Fluids in altered stockwork rocks and carbonates have similar H20-NaCI-CO2 system, both belonging to the sedimentary-exhalative system. The fluids migrate from the pipe facies to the unstratified ore bodies. Boiling of the fluids causes the separation of CO2 vapor and liquid H2O. When the fluids migrate into the unconsolidated thick-bedded marble, the escape of CO2, decreasing temperature and pressure as well as some involvement of seawater into the fluids result in the unmixing of fluids with high and low salinity and deposition of ore-forming materials. The two unmixed fluids were trapped in unconsolidated carbonates and the ore-forming materials were deposited in the unconsolidated carbonates to form the sedimentary-exhalative type unstratified ore bodies. The oreforming temperature of unstratified ore bodies is up to high temperature indicating that there is a huge ore-forming potential in its deep.
基金Projects 2004CB619205 supported by the National Basic Research and Development Program of China50321402 by the National Science Fund for Distingui- shed Young Scholars of China50574099 by the National Natural Science Foundation of China
文摘Ore dumps are heterogeneous bodies with anisotropic seepage characteristics because of the ore segregation. In an indoor experiment,a dump was constructed with three strata,where the horizontal and vertical seepage experi-ments were carried out. Horizontals flow are regarded as phreatic plan flows without penetration. Its seepage law sati-fies the Dupuit equation. With parallel lay seepage model,the equivalent seepage coefficient in the horizontal flow was obtained and was equivalent to the weighted mean of the seepage coefficient of each stratum. An unsaturated flow ap-peared in the vertical experiment,with a hydraulic gradient of 1. The vertical flow was equivalent to the seepage model that moved in vertical bedding; its equivalent seepage coefficient depended on the stratum with the minimum seepage coefficient. That the experiment showed clear anisotropy in a heterogeneous body was obvious with an anisotropic co-efficient between 63 and 155,which is 25 to 100 times larger than that of a homogeneous body.
基金This study was supported by the National Natural Science Foundation of China Grant 49572095
文摘Changchengite occurs in chromite orebodies in dunite and in platinum placer deposits in chromite orebodies nearby. The mineral occurs as massive aggregates or veinlets on margins of iridisite (IrS2) and replaces it. Opaque. Lustre metallic. Colour steel-black. Streak black. Hm = 3.7. VHN20= 165 kg/ mm2. Isotropic. Cleavage none. Density 11.96 g/ cm3. Seven electron microprobe analyses give the following mean chemical results (wt. %): S 7.2, Cu 0.3, Te 0.4, Ir 41.2, Pt 2.8 and Bi 47.3 with total 99.1. The simplified formula is IrBiS. The strongest X-ray powder diffraction lines (hkl, d, I) are 210, 2.75 (70); 211, 2.51 (60); 311, 1.860 (100); 440. 1.090 (50) and 600, 1.027 (50). The X-ray powder diffraction pattern is similar to that of mayingite. After the diffraction data are indexed the mineral is determined to be cubic. The space group is P213 with a = 0.6164(4) nm, V = 0.2342 nm3 and Z = 4.
文摘A detailed investigation on 3D spatial distribution rules of Banded Iron-bearing Formation(BIF) with methods of gravity-magnetic inversion and 3D modeling of iron mine is presented based on the former analysis in the Anshan-Benxi area.Three dimension spatial distribution types of BIF are concluded as hook-like,tabularlike and "W"-like.BIF was mainly developed in three types of space including(1) the syncline cores,(2)cover coverage area,and(3) the deeper buried area where the range of tectonic uplift is small.The influences of tectonism,magmatic intrusion and uplift-erosion on the spatial distribution shapes of BIF are clarified.
基金the National Natural Science Foundation of China
文摘The source of rare earth elements (REE) ore-forming substances is identified to be extremely distinct from that of iron ores.The Bayan Obo Fe-REE ore deposits were generated by a composite process of both crustal and mantle source mineralization.The original iron bodies are of a sedimentary deposit from supergenesis,while the REE ores have been formed by mantle fluid metasomatism superimposed upon the pre-existing iron bodies.It is believed that the REE ore deposit would be controlled by intracontinental hot spot.The H_8 dolomite in mine regions belongs to normal sedimentary carbonate rock,its C and O isotopic composition rules out the possibility comparable with magrnatic carbonatite.The Sm-Nd isochrons of separated REE minerals have shown two REE peak mineralization periods:early-middle Proterozoic (1 700 Ma±480 Ma) and Caledonia (424-402 Ma).