期刊文献+
共找到3,095篇文章
< 1 2 155 >
每页显示 20 50 100
Small extracellular vesicles from hypoxia-preconditioned bone marrow mesenchymal stem cells attenuate spinal cord injury via miR-146a-5p-mediated regulation of macrophage polarization 被引量:1
1
作者 Zeyan Liang Zhelun Yang +5 位作者 Haishu Xie Jian Rao Xiongjie Xu Yike Lin Chunhua Wang Chunmei Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2259-2269,共11页
Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)... Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)help mediate the beneficial effects conferred by MSC transplantation following spinal cord injury.Strikingly,hypoxia-preconditioned bone marrow mesenchymal stem cell-derived SEVs(HSEVs)exhibit increased therapeutic potency.We thus explored the role of HSEVs in macrophage immune regulation after spinal cord injury in rats and their significance in spinal cord repair.SEVs or HSEVs were isolated from bone marrow MSC supernatants by density gradient ultracentrifugation.HSEV administration to rats via tail vein injection after spinal cord injury reduced the lesion area and attenuated spinal cord inflammation.HSEVs regulate macrophage polarization towards the M2 phenotype in vivo and in vitro.Micro RNA sequencing and bioinformatics analyses of SEVs and HSEVs revealed that mi R-146a-5p is a potent mediator of macrophage polarization that targets interleukin-1 receptor-associated kinase 1.Reducing mi R-146a-5p expression in HSEVs partially attenuated macrophage polarization.Our data suggest that HSEVs attenuate spinal cord inflammation and injury in rats by transporting mi R-146a-5p,which alters macrophage polarization.This study provides new insights into the application of HSEVs as a therapeutic tool for spinal cord injury. 展开更多
关键词 bone marrow mesenchymal stem cells hypoxia preconditioning interleukin-1 receptor-associated kinase 1 MACROPHAGES mesenchymal stem cells small extracellular vesicles spinal cord injury
下载PDF
Therapeutic utility of human umbilical cord-derived mesenchymal stem cells-based approaches in pulmonary diseases:Recent advancements and prospects 被引量:1
2
作者 Min Meng Wei-Wei Zhang +2 位作者 Shuang-Feng Chen Da-Rui Wang Chang-Hui Zhou 《World Journal of Stem Cells》 SCIE 2024年第2期70-88,共19页
Pulmonary diseases across all ages threaten millions of people and have emerged as one of the major public health issues worldwide.For diverse disease con-ditions,the currently available approaches are focused on alle... Pulmonary diseases across all ages threaten millions of people and have emerged as one of the major public health issues worldwide.For diverse disease con-ditions,the currently available approaches are focused on alleviating clinical symptoms and delaying disease progression but have not shown significant therapeutic effects in patients with lung diseases.Human umbilical cord-derived mesenchymal stem cells(UC-MSCs)isolated from the human UC have the capacity for self-renewal and multilineage differentiation.Moreover,in recent years,these cells have been demonstrated to have unique advantages in the treatment of lung diseases.We searched the Public Clinical Trial Database and found 55 clinical trials involving UC-MSC therapy for pulmonary diseases,including coronavirus disease 2019,acute respiratory distress syndrome,bron-chopulmonary dysplasia,chronic obstructive pulmonary disease,and pulmonary fibrosis.In this review,we summarize the characteristics of these registered clinical trials and relevant published results and explore in depth the challenges and opportunitiesfaced in clinical application.Moreover,the underlying mole-cular mechanisms involved in UC-MSC-based therapy for pulmonary diseases are also analyzed in depth.In brief,this comprehensive review and detailed analysis of these clinical trials can be expected to provide a scientific reference for future large-scale clinical application. 展开更多
关键词 Pulmonary diseases mesenchymal stem cells Human umbilical cord cell therapy Clinical trials
下载PDF
Expansion of human umbilical cord derived mesenchymal stem cells in regenerative medicine
3
作者 Shafiqa Naeem Rajput Bushra Kiran Naeem +2 位作者 Anwar Ali Asmat Salim Irfan Khan 《World Journal of Stem Cells》 SCIE 2024年第4期410-433,共24页
BACKGROUND Stem cells are undifferentiated cells that possess the potential for self-renewal with the capacity to differentiate into multiple lineages.In humans,their limited numbers pose a challenge in fulfilling the... BACKGROUND Stem cells are undifferentiated cells that possess the potential for self-renewal with the capacity to differentiate into multiple lineages.In humans,their limited numbers pose a challenge in fulfilling the necessary demands for the regeneration and repair of damaged tissues or organs.Studies suggested that mesenchymal stem cells(MSCs),necessary for repair and regeneration via transplantation,require doses ranging from 10 to 400 million cells.Furthermore,the limited expansion of MSCs restricts their therapeutic application.AIM To optimize a novel protocol to achieve qualitative and quantitative expansion of MSCs to reach the targeted number of cells for cellular transplantation and minimize the limitations in stem cell therapy protocols.METHODS Human umbilical cord(hUC)tissue derived MSCs were obtained and re-cultured.These cultured cells were subjected to the following evaluation pro-cedures:Immunophenotyping,immunocytochemical staining,trilineage differentiation,population doubling time and number,gene expression markers for proliferation,cell cycle progression,senescence-associatedβ-galactosidase assay,human telomerase reverse transcriptase(hTERT)expression,mycoplasma,cytomegalovirus and endotoxin detection.RESULTS Analysis of pluripotent gene markers Oct4,Sox2,and Nanog in recultured hUC-MSC revealed no significant differences.The immunophenotypic markers CD90,CD73,CD105,CD44,vimentin,CD29,Stro-1,and Lin28 were positively expressed by these recultured expanded MSCs,and were found negative for CD34,CD11b,CD19,CD45,and HLA-DR.The recultured hUC-MSC population continued to expand through passage 15.Proliferative gene expression of Pax6,BMP2,and TGFb1 showed no significant variation between recultured hUC-MSC groups.Nevertheless,a significant increase(P<0.001)in the mitotic phase of the cell cycle was observed in recultured hUC-MSCs.Cellular senescence markers(hTERT expression andβ-galactosidase activity)did not show any negative effect on recultured hUC-MSCs.Additionally,quality control assessments consistently confirmed the absence of mycoplasma,cytomegalovirus,and endotoxin contamination.CONCLUSION This study proposes the development of a novel protocol for efficiently expanding stem cell population.This would address the growing demand for larger stem cell doses needed for cellular transplantation and will significantly improve the feasibility of stem cell based therapies. 展开更多
关键词 Human umbilical cord mesenchymal stem cells EXPANSION cell proliferation In vitro expansion SENESCENCE
下载PDF
Umbilical cord mesenchymal stem cell exosomes alleviate necrotizing enterocolitis in neonatal mice by regulating intestinal epithelial cells autophagy
4
作者 Lin Zhu Lu He +2 位作者 Wu Duan Bo Yang Ning Li 《World Journal of Stem Cells》 SCIE 2024年第6期728-738,共11页
BACKGROUND Necrotizing enterocolitis(NEC)is a severe gastrointestinal disease that affects premature infants.Although mounting evidence supports the therapeutic effect of exosomes on NEC,the underlying mechanisms rema... BACKGROUND Necrotizing enterocolitis(NEC)is a severe gastrointestinal disease that affects premature infants.Although mounting evidence supports the therapeutic effect of exosomes on NEC,the underlying mechanisms remain unclear.AIM To investigate the mechanisms underlying the regulation of inflammatory response and intestinal barrier function by umbilical cord mesenchymal stem cell(UCMSCs)exosomes,as well as their potential in alleviating NEC in neonatal mice.METHODS NEC was induced in 5-d-old C57BL/6 pups through hypoxia and gavage feeding of formula containing lipopolysaccharide(LPS),after which the mice received human UCMSC exosomes(hUCMSC-exos).The control mice were allowed to breastfeed with their dams.Ileal tissues were collected from the mice and analyzed by histopathology and immunoblotting.Colon tissues were collected from NEC neonates and analyzed by immunofluorescence.Molecular biology and cell culture approaches were employed to study the related mechanisms in intestinal epithelial cells.RESULTS We found that autophagy is overactivated in intestinal epithelial cells during NEC,resulting in reduced expression of tight junction proteins and an increased inflammatory response.The ability of hUCMSC-exos to ameliorate NEC in a mouse model was dependent on decreased intestinal autophagy.We also showed that hUCMSC-exos alleviate the inflammatory response and increase migration ability in intestinal epithelial cells induced by LPS.CONCLUSION These results contribute to a better understanding of the protective mechanisms of hUCMSC-exos against NEC and provide a new theoretical and experimental foundation for NEC treatment.These findings also enhance our understanding of the role of the autophagy mechanism in NEC,offering potential avenues for identifying new therapeutic targets. 展开更多
关键词 Necrotizing enterocolitis AUTOPHAGY Umbilical cord mesenchymal stem cell EXOSOMES Intestinal epithelial cell Intestinal barrier function
下载PDF
Human umbilical cord mesenchymal stem cells derivedexosomes on VEGF-A in hypoxic-induced mice retinal astrocytes and mice model of retinopathy of prematurity
5
作者 Xiao-Tian Zhang Bo-Wen Zhao +1 位作者 Yuan-Long Zhang Song Chen 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第7期1238-1247,共10页
AIM:To observe the effect of human umbilical cord mesenchymal stem cells(hUCMSCs)secretions on the relevant factors in mouse retinal astrocytes,and to investigate the effect of hUCMSCs on the expression of vascular en... AIM:To observe the effect of human umbilical cord mesenchymal stem cells(hUCMSCs)secretions on the relevant factors in mouse retinal astrocytes,and to investigate the effect of hUCMSCs on the expression of vascular endothelial growth factor-A(VEGF-A)and to observe the therapeutic effect on the mouse model of retinopathy of prematurity(ROP).METHODS:Cultured hUCMSCs and extracted exosomes from them and then retinal astrocytes were divided into control group and hypoxia group.MTT assay,flow cytometry,reverse transcription-polymerase chain reaction(RT-PCR)and Western blot were used to detect related indicators.Possible mechanisms by which hUCMSCs exosomes affect VEGF-A expression in hypoxia-induced mouse retinal astrocytes were explored.At last,the efficacy of exosomes of UCMSCs in a mouse ROP model was explored.Graphpad6 was used to comprehensively process data information.RESULTS:The secretion was successfully extracted from the culture supernatant of hUCMSCs by gradient ultracentrifugation.Reactive oxygen species(ROS)and hypoxia inducible factor-1α(HIF-1α)of mice retinal astrocytes under different hypoxia time and the expression level of VEGF-A protein and VEGF-A mRNA increased,and the ROP cell model was established after 6h of hypoxia.The secretions of medium and high concentrations of hUCMSCs can reduce ROS and HIF-1α,the expression levels of VEGF-A protein and VEGF-A mRNA are statistically significant and concentration dependent.Compared with the ROP cell model group,the expression of phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT)/mammalian target of rapamycin(mTOR)signal pathway related factors in the hUCMSCs exocrine group is significantly decreased.The intravitreal injection of the secretions of medium and high concentrations of hUCMSCs can reduce VEGF-A and HIF-1αin ROP model tissues.HE staining shows that the number of retinal neovascularization in ROP mice decreases with the increase of the dose of hUCMSCs secretion.CONCLUSION:In a hypoxia induced mouse retinal astrocyte model,hUCMSCs exosomes are found to effectively reduce the expression of HIF-1αand VEGF-A,which are positively correlated with the concentration of hUCMSCs exosomes.HUCMSCs exosomes can effectively reduce the number of retinal neovascularization and the expression of HIF-1αand VEGF-A proteins in ROP mice,and are positively correlated with drug dosage.Besides,they can reduce the related factors on the PI3K/AKT/mTOR signaling pathway. 展开更多
关键词 human umbilical cord mesenchymal stem cells retinal astrocytes retinopathy of prematurity vascular endothelial growth factor hypoxia inducible factor
下载PDF
Transplantation of mesenchymal stem cells from human umbilical cord versus human umbilical cord blood for peripheral nerve regeneration 被引量:15
6
作者 Kang-Mi Pang Mi-Ae Sung +7 位作者 Mohammad S.Alrashdan Sang Bae Yoo Samir Jabaiti Soung-Min Kim Sung-June Kim Myung-Jin Kim Jeong Won Jahng Jong-Ho Lee 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第11期838-845,共8页
BACKGROUND: Mesenchymal stem cells (MSCs) appear to be a good alternative to Schwann cells in the treatment of peripheral nerve injury. Fetal stem cells, like umbilical cord blood (UCB) and umbilical cord (UC) ... BACKGROUND: Mesenchymal stem cells (MSCs) appear to be a good alternative to Schwann cells in the treatment of peripheral nerve injury. Fetal stem cells, like umbilical cord blood (UCB) and umbilical cord (UC) stem cells, have several advantages over adult stem cells. OBJECTIVE: To assess the effects of UC-derived MSCs (UCMSCs) and UCB-derived MSCs (UCBMSCs) in repair of sciatic nerve defects. DESIGN, TIME AND SETTING: A randomized controlled animal experiment was performed at the laboratory of Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital, from July to December 2009. MATERIALS: UCMSCs were provided by the Research Institute of Biotechnology, Dongguk University. UCBMSCs were provided by the Laboratory of Stem Cells and Tumor Biology, College of Veterinary Medicine, Seoul National University. Dulbecco's modified Eagle's medium (DMEM) was purchased from Gibco-BRL, USA. METHODS: Seven-week-old Sprague-Dawley rats were randomly and evenly divided into three groups: DMEM, UCBMSCs, and UCMSCs. A 10-mm defect in the left sciatic nerve was constructed in all rats. DMEM (15 μL) containing 1×10^6 UCBMSCs or UCMSCs was injected into the gap between nerve stumps, with the surrounding epineurium as a natural conduit. For the DMEM group, simple DMEM was injected. MAIN OUTCOME MEASURES: At 7 weeks after sciatic nerve dissection, dorsal root ganglia neurons were labeled by fluorogold retrograde labeling. At 8 weeks, electrophysiology and histomorphometry were performed. At 2, 4, 6, and 8 weeks after surgery, sciatic nerve function was evaluated using gait analysis. RESULTS: The UCBMSCs group and the UCMSCs group exhibited similar sciatic nerve function and electrophysiological indices, which were better than the DMEM group, as measured by gait analysis (P 〈 0.05). Fluorogold retrograde labeling of sciatic nerve revealed that the UCBMSCs group demonstrated a higher number of labeled neurons; however, the differences were not significant. Histomorphometric indices were similar in the UCBMSCs and UCMSCs groups, and total axon counts, particularly axon density (P 〈 0.05), were significantly greater in the UCBMSCs and UCMSCs groups than in the DMEM group. CONCLUSION: Transplanting either UCBMSCs or UCMSCs into axotomized sciatic nerves could accelerate and promote sciatic nerve regeneration over 8 weeks. Both treatments had similar effects on nerve regeneration. 展开更多
关键词 peripheral nerve regeneration umbilical cord mesenchymal stem cell umbilical cord blood mesenchymal stem cell axotomy defect stem cells
下载PDF
Mesenchymal stem cells derived from human placenta suppress allogeneic umbilical cord blood lymphocyte proliferation 被引量:36
7
作者 Chang Dong LI Wei Yuan ZHANG +4 位作者 He Lian LI Xiao Xia JIANG Yi ZHANG Pei Hsien TANG Ning MAO 《Cell Research》 SCIE CAS CSCD 2005年第7期539-547,共9页
Human placenta-derived mononuclear cells (MNC) were isolated by a Percoll density gradient and cultured in mesenchymal stem cell (MSC) maintenance medium. The homogenous layer of adherent cells exhibited a typical... Human placenta-derived mononuclear cells (MNC) were isolated by a Percoll density gradient and cultured in mesenchymal stem cell (MSC) maintenance medium. The homogenous layer of adherent cells exhibited a typical fibroblastlike morphology, a large expansive potential, and cell cycle characteristics including a subset of quiescent cells. In vitro differentiation assays showed the tripotential differentiation capacity of these cells toward adipogenic, osteogenic and chondrogenic lineages. Flow cytometry analyses and immunocytochemistry stain showed that placental MSC was a homogeneous cell population devoid of hematopoietic cells, which uniformly expressed CD29, CD44, CD73, CD105, CD166, laminin, fibronectin and vimentin while being negative for expression of CD31, CD34, CD45 and m-smooth muscle actin. Most importantly, immuno-phenotypic analyses demonstrated that these cells expressed class Ⅰ major histocompatibility complex (MHC-I), but they did not express MHC-Ⅱ molecules. Additionally these cells could suppress umbilical cord blood (UCB) lymphocytes proliferation induced by cellular or nonspecific mitogenic stimuli. This strongly implies that they may have potential application in allograft transplantation. Since placenta and UCB are homogeneous, the MSC derived from human placenta can be transplanted combined with hematopoietic stem cells (HSC) from UCB to reduce the potential graft-versus-host disease (GVHD) in recipients. 展开更多
关键词 mesenchymal stem cells human placenta umbilical cord blood immune regulation.
下载PDF
Transplantation of human umbilical cord blood mesenchymal stem cells to treat a rat model of traumatic brain injury 被引量:5
8
作者 Junjian Zhao Naiyao Chen +7 位作者 Na Shen Hui Zhao Dali Wang Jun Shi Yang Wang Xiufeng Cui Zhenyu Yan Hui Xue 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第10期741-748,共8页
In the present study, human umbilical cord blood mesenchymal stem cells were injected into a rat model of traumatic brain injury via the tail vein. Results showed that 5-bromodeoxyuridine-labeled cells aggregated arou... In the present study, human umbilical cord blood mesenchymal stem cells were injected into a rat model of traumatic brain injury via the tail vein. Results showed that 5-bromodeoxyuridine-labeled cells aggregated around the injury site, surviving up to 4 weeks post-transplantation. In addition, transplantation-related death did not occur, and neurological functions significantly improved. Histological detection revealed attenuated pathological injury in rat brain tissues following human umbilical cord blood mesenchymal stem cell transplantation. In addition, the number of apoptotic cells decreased. Immunohistochemistry and in situ hybridization showed increased expression of brain-derived neurotrophic factor, nerve growth factor, basic fibroblast growth factor, and vascular endothelial growth factor, along with increased microvessel density in surrounding areas of brain injury. Results demonstrated migration of transplanted human umbilical cord blood mesenchymal stem cells into the lesioned boundary zone of rats, as well as increased angiogenesis and expression of related neurotrophic factors in the lesioned boundary zone. 展开更多
关键词 ANGIOGENESIS basic fibroblast growth factor brain-derived neurotrophic factor human umbilical cord blood mesenchymal stem cells nerve growth factor traumatic brain injury vascular endothelial growth factor
下载PDF
Human umbilical cord blood-derived mesenchymal stem cells promote regeneration of crush-injured rat sciatic nerves 被引量:4
9
作者 Mi-Ae Sung Hun Jong Jung +7 位作者 Jung-Woo Lee Jin-Yong Lee Kang-Mi Pang Sang Bae Yoo Mohammad S. Alrashdan Soung-Min Kim Jeong Won Jahng Jong-Ho Lee 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第26期2018-2027,共10页
Several studies have demonstrated that human umbilical cord blood-derived mesenchymal stem cells can promote neural regeneration following brain injury. However, the therapeutic effects of human umbilical cord blood-d... Several studies have demonstrated that human umbilical cord blood-derived mesenchymal stem cells can promote neural regeneration following brain injury. However, the therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells in guiding peripheral nerve regeneration remain poorly understood. This study was designed to investigate the effects of human umbilical cord blood-derived mesenchymal stem cells on neural regeneration using a rat sciatic nerve crush injury model. Human umbilical cord blood-derived mesenchymal stem cells (1 ~ 106) or a PBS control were injected into the crush-injured segment of the sciatic nerve. Four weeks after cell injection, brain-derived neurotrophic factor and tyrosine kinase receptor B mRNA expression at the lesion site was increased in comparison to control. Furthermore, sciatic function index, Fluoro Gold-labeled neuron counts and axon density were also significantly increased when compared with control. Our results indicate that human umbilical cord blood-derived mesenchvmal stem cells promote the functinnal r~.RcJv^rv nf P.n I^h-inillr^4 ~r^i~tit, n^r~e 展开更多
关键词 human umbilical cord blood-derived mesenchymal stem cells sciatic nerve crush injury FLUOROGOLD stem cells peripheral nerve regeneration REGENERATION neural regeneration
下载PDF
Human umbilical cord mesenchymal stem cell-derived exosomes loaded into a composite conduit promote functional recovery after peripheral nerve injury in rats 被引量:2
10
作者 Haoshuai Tang Junjin Li +6 位作者 Hongda Wang Jie Ren Han Ding Jun Shang Min Wang Zhijian Wei Shiqing Feng 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期900-907,共8页
Complete transverse injury of peripheral nerves is challenging to treat.Exosomes secreted by human umbilical cord mesenchymal stem cells are considered to play an important role in intercellular communication and regu... Complete transverse injury of peripheral nerves is challenging to treat.Exosomes secreted by human umbilical cord mesenchymal stem cells are considered to play an important role in intercellular communication and regulate tissue regeneration.In previous studies,a collagen/hyaluronic acid sponge was shown to provide a suitable regeneration environment for Schwann cell proliferation and to promote axonal regeneration.This three-dimensional(3D)composite conduit contains a collagen/hyaluronic acid inner sponge enclosed in an electrospun hollow poly(lactic-co-glycolic acid)tube.However,whether there is a synergy between the 3D composite conduit and exosomes in the repair of peripheral nerve injury remains unknown.In this study,we tested a comprehensive strategy for repairing long-gap(10 mm)peripheral nerve injury that combined the 3D composite conduit with human umbilical cord mesenchymal stem cell-derived exosomes.Repair effectiveness was evaluated by sciatic functional index,sciatic nerve compound muscle action potential recording,recovery of muscle mass,measuring the cross-sectional area of the muscle fiber,Masson trichrome staining,and transmission electron microscopy of the regenerated nerve in rats.The results showed that transplantation of the 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes promoted peripheral nerve regeneration and restoration of motor function,similar to autograft transplantation.More CD31-positive endothelial cells were observed in the regenerated nerve after transplantation of the loaded conduit than after transplantation of the conduit without exosomes,which may have contributed to the observed increase in axon regeneration and distal nerve reconnection.Therefore,the use of a 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes represents a promising cell-free therapeutic option for the treatment of peripheral nerve injury. 展开更多
关键词 axon growth collagen EXOSOME human umbilical cord mesenchymal stem cells hyaluronic acid muscular atrophy nerve guidance conduits peripheral nerve regeneration
下载PDF
Differentiation and tumorigenicity of neural stem cells from human cord blood mesenchymal stem cells 被引量:3
11
作者 Jing Xiang Changming Wang Jingzhou Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第10期769-774,共6页
BACKGROUND: Mesenchymal stem cells (MSCs) are capable of differentiating into a variety of tissues and exhibit low immunogenicity. OBJECTIVE: To investigate isolation and in vitro cultivation methods of human cord... BACKGROUND: Mesenchymal stem cells (MSCs) are capable of differentiating into a variety of tissues and exhibit low immunogenicity. OBJECTIVE: To investigate isolation and in vitro cultivation methods of human cord blood MSCs, to observe expression of neural stem cell (NSC) marker mRNA under induction, and to detect tumorigenicity in animals. DESIGN, TIME AND SETTING: A cell biological, in vitro trial and a randomized, controlled, in vivo experiment were performed at the Department of Neurology, Daping Hospital at the Third Military Medical University of Chinese PLA from August 2006 to May 2008. MATERIALS: Umbilical cord blood was collected from full-term-delivery fetus at the Department of Gynecology and Obstetrics of Daping Hospital, China. Eighteen BALB/C nu/nu nude mice were randomly assigned to three groups: back subcutaneous, cervical subcutaneous, and control, with 6 mice in each group. METHODS: Monocytes were isolated from heparinized human cord blood samples by density gradient centrifugation and then adherent cultivated in vitro to obtain MSC clones. After the cord blood MSCs were cultured for 7 days with nerve growth factor and retinoic acid to induce differentiation into NSCs, the cells (adjusted density of 1 × 10^7/mL) were prepared into cell suspension. In the back subcutaneous and cervical subcutaneous groups, nude mice were hypodermically injected with a 0.5-mL cell suspension into the back and cervical regions, respectively. In the control group, nude mice received a subcutaneous injection of 0.5 mL physiological saline into the back or cervical regions, respectively. MAIN OUTCOME MEASURES: Cellular morphology was observed by inverted microscopy, cultured cord blood MSCs were examined by flow cytometry, expression of nestin and musashi-1 mRNA was detected by reverse-transcriptase polymerase chain reaction prior to and after induction, and tumorigenicity following cord blood MSC transplantation was assayed by hematoxylin-eosin staining. RESULTS: Following adherent cultivation, the majority of cord blood monocytes became rhombic and strongly expressed CD29, but not CD34, CD1 la, or CD11 b. These results supported previously known characteristics of cord blood MSCs. Following differentiation induction, nestin and musashi-1 were expressed on the surface of NSCs, exhibiting strongest expression at 48 hours, and subsequently reducing expression. Cultured cord blood MSCs were not tumorigenic in the nude mice. Cellular morphology displayed no malignant changes between the control and subcutaneous groups. CONCLUSION: MSCs can be isolated from human cord blood, efficiently expanded under culture conditions, differentiated into NSCs following induction, and display no tumorigenicity in nude mice. 展开更多
关键词 cord blood mesenchymal stem cells neural stem cells induced differentiation NESTIN tumorigenicity
下载PDF
Functional recovery and microenvironmental alterations in a rat model of spinal cord injury following human umbilical cord blood-derived mesenchymal stem cells transplantation 被引量:3
12
作者 Hongtao Zhang Huilin Yang +1 位作者 Huanxiang Zhang Jing Qu 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第3期165-170,共6页
BACKGROUND: Transplantation of human umbilical cord blood-derived mesenchymal stem cells (MSCs) has been shown to benefit spinal cord injury (SCI) repair. However, mechanisms of microenvironmental regulation duri... BACKGROUND: Transplantation of human umbilical cord blood-derived mesenchymal stem cells (MSCs) has been shown to benefit spinal cord injury (SCI) repair. However, mechanisms of microenvironmental regulation during differentiation of transplanted MSCs remain poorly understood. OBJECTIVE: To observe changes in nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and interleukin-8 (IL-8) expression following transplantation of human umbilical cord-derived MSCs, and to explore the association between microenvironment and neural functional recovery following MSCs transplantation. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Department of Orthopedics, First Affiliated Hospital of Soochow University from April 2005 to March 2007. MATERIALS: Human cord blood samples were provided by the Department of Gynecology and Obstetrics, First Affiliated Hospital of Soochow University. Written informed consent was obtained. METHODS: A total of 62 Wister rats were randomly assigned to control (n = 18), model (n = 22, SCI + PBS), and transplantation (n = 22, SCI + MSCs) groups. The rat SCI model was established using the weight compression method. MSCs were isolated from human umbilical cord blood and cultured in vitro for several passages. 5-bromodeoxyuridine (BrdU)-Iabeled MSCs (24 hours before injection) were intravascularly transplanted. MAIN OUTCOME MEASURES: The rats were evaluated using the Basso, Beattie and Bresnahan (BBB) locomotor score and inclined plane tests. Transplanted cells were analyzed following immunohistochemistry. Enzyme-linked immunosorbant assay was performed to determine NGF, BDNF, and IL-8 levels prior to and after cell transplantation. RESULTS: A large number of BrdU-positive MSCs were observed in the SCI region of the transplantation group, and MSCs were evenly distributed in injured spinal cord tissue 1 week after transplantation. BBB score and inclined plane test results revealed significant functional improvement in the transplantation group compared to the model group (P 〈 0.05), which was maintained for 2-3 weeks. Compared to the model group, NGF and BDNF levels were significantly increased in the injured region following MSCs transplantation at 3 weeks (P 〈 0.05), but IL-8 levels remained unchanged (P 〉 0.05). CONCLUSION: MSCs transplantation increased NGF and BDNF expression in injured spinal cord tissue. MSCs could promote neurological function recovery in SCI rats by upregulating NGF expression and improving regional microenvironments. 展开更多
关键词 human umbilical cord blood-derived mesenchymal stem cells nerve growth factor brain-derived neurotrophic factor INTERLEUKIN-8 spinal cord injury neural stem cells neural regeneration
下载PDF
Prospects for the therapeutic development of umbilical cord bloodderived mesenchymal stem cells 被引量:5
13
作者 Soyoun Um Jueun Ha +2 位作者 Soo Jin Choi Wonil Oh Hye Jin Jin 《World Journal of Stem Cells》 SCIE 2020年第12期1511-1528,共18页
Umbilical cord blood(UCB)is a primitive and abundant source of mesenchymal stem cells(MSCs).UCB-derived MSCs have a broad and efficient therapeutic capacity to treat various diseases and disorders.Despite the high lat... Umbilical cord blood(UCB)is a primitive and abundant source of mesenchymal stem cells(MSCs).UCB-derived MSCs have a broad and efficient therapeutic capacity to treat various diseases and disorders.Despite the high latent selfrenewal and differentiation capacity of these cells,the safety,efficacy,and yield of MSCs expanded for ex vivo clinical applications remains a concern.However,immunomodulatory effects have emerged in various disease models,exhibiting specific mechanisms of action,such as cell migration and homing,angiogenesis,anti-apoptosis,proliferation,anti-cancer,anti-fibrosis,anti-inflammation and tissue regeneration.Herein,we review the current literature pertaining to the UCB-derived MSC application as potential treatment strategies,and discuss the concerns regarding the safety and mass production issues in future applications. 展开更多
关键词 Umbilical cord blood mesenchymal stem cell stem cell therapy IMMUNOMODULATION Regenerative medicine Therapeutic cell manufacturing processing
下载PDF
Induced Differentiation of Human Cord Blood Mesenchymal Stem/Pro genitor Cells into Cardiomyocyte-like Cells In Vitro 被引量:3
14
作者 程范军 邹萍 +2 位作者 杨汉东 余正堂 仲照东 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2003年第2期154-157,共4页
The feasibility of using cord blood mesenchymal stem/progenitor cells (CB-MSPCs) to regenerate cardiomyocytes and the optimal inducing conditions were investigated. The CB mononuclear cells were cultured in low serum ... The feasibility of using cord blood mesenchymal stem/progenitor cells (CB-MSPCs) to regenerate cardiomyocytes and the optimal inducing conditions were investigated. The CB mononuclear cells were cultured in low serum DMEM medium to produce an adherent layer. After expansion, the adherent cells were added into cardiomyocyte inducing medium supplemented with 5-azacytidine. Cardiogenic specific contractile protein troponin T staining was performed to identify the cardiomy-ocyte-like cells. The results showed that the frequency of CB-MSPCs clones in CB mononuclear cells was 0. 5×10-6 and about 1. 3×107-fold expansion was achieved within 20 sub-cultivation. After car-diogenic induction, 70 % CB-MSPCs was differentiated into cardiomyocyte-like cells. It was indicated that low serum culture could expand CB-MSPCs extensively and the expanded CB-MSPCs could be induced to differentiate into cardiomyocyte-like cells in high efficiency. 展开更多
关键词 cord blood mesenchymal stem/progenitor cell differentiation CARDIOMYOCYTE 5-AZACYTIDINE
下载PDF
High tibial osteotomy with human umbilical cord blood-derived mesenchymal stem cells implantation for knee cartilage regeneration 被引量:4
15
作者 Jun-Seob Song Ki-Taek Hong +6 位作者 Chae-Gwan Kong Na-Min Kim Jae-Yub Jung Han-Soo Park Young Ju Kim Ki Bong Chang Seok Jung Kim 《World Journal of Stem Cells》 SCIE CAS 2020年第6期514-526,共13页
BACKGROUND High tibial osteotomy(HTO)is a well-established method for the treatment of medial compartment osteoarthritis of the knee with varus deformity.However,HTO alone cannot adequately repair the arthritic joint,... BACKGROUND High tibial osteotomy(HTO)is a well-established method for the treatment of medial compartment osteoarthritis of the knee with varus deformity.However,HTO alone cannot adequately repair the arthritic joint,necessitating cartilage regeneration therapy.Cartilage regeneration procedures with concomitant HTO are used to improve the clinical outcome in patients with varus deformity.AIM To evaluate cartilage regeneration after implantation of allogenic human umbilical cord blood-derived mesenchymal stem cells(hUCB-MSCs)with concomitant HTO.METHODS Data for patients who underwent implantation of hUCB-MSCs with concomitant HTO were evaluated.The patients included in this study were over 40 years old,had a varus deformity of more than 5°,and a full-thickness International Cartilage Repair Society(ICRS)grade IV articular cartilage lesion of more than 4 cm2 in the medial compartment of the knee.All patients underwent second-look arthroscopy during hardware removal.Cartilage regeneration was evaluated macroscopically using the ICRS grading system in second-look arthroscopy.We also assessed the effects of patient characteristics,such as trochlear lesions,age,and lesion size,using patient medical records.RESULTS A total of 125 patients were included in the study,with an average age of 58.3±6.8 years(range:43-74 years old);95(76%)were female and 30(24%)were male.The average hip-knee-ankle(HKA)angle for measuring varus deformity was 7.6°±2.4°(range:5.0-14.2°).In second-look arthroscopy,the status of medial femoral condyle(MFC)cartilage was as follows:73(58.4%)patients with ICRS grade I,37(29.6%)with ICRS grade II,and 15(12%)with ICRS grade III.No patients were staged with ICRS grade IV.Additionally,the scores[except International Knee Documentation Committee(IKDC)at 1 year]of the ICRS grade I group improved more significantly than those of the ICRS grade II and III groups.CONCLUSION Implantation of hUCB-MSCs with concomitant HTO is an effective treatment for patients with medial compartment osteoarthritis and varus deformity.Regeneration of cartilage improves the clinical outcomes for the patients. 展开更多
关键词 ALLOGENEIC Human umbilical cord blood-derived mesenchymal stem cells Cartilage regeneration High tibial osteotomy Osteoarthritic knees ARTHROSCOPY
下载PDF
Tissue-source effect on mesenchymal stem cells as living biodrugs for heart failure:Systematic review and meta-analysis 被引量:1
16
作者 Moaz Safwan Mariam Safwan Bourgleh +1 位作者 Mohamed Aldoush Khawaja Husnain Haider 《World Journal of Cardiology》 2024年第8期469-483,共15页
BACKGROUND Mesenchymal stem cells(MSCs),as living biodrugs,have entered advanced phases of clinical assessment for cardiac function restoration in patients with myocardial infarction and heart failure.While MSCs are a... BACKGROUND Mesenchymal stem cells(MSCs),as living biodrugs,have entered advanced phases of clinical assessment for cardiac function restoration in patients with myocardial infarction and heart failure.While MSCs are available from diverse tissue sources,bone-marrow-derived MSCs(BM-MSCs)remain the most wellstudied cell type,besides umbilical-cord-derived MSCs(UC-MSCs).The latter offers advantages,including noninvasive availability without ethical considerations.AIM To compare the safety and efficacy of BM-MSCs and UC-MSCs in terms of left ventricular ejection fraction(LVEF),6-min walking distance(6MWD),and major adverse cardiac events(MACEs).METHODS Five databases were systematically searched to identify randomized controlled trials(RCTs).Thirteen RCTs(693 patients)were included using predefined eligibility criteria.Weighted mean differences and odds ratio(OR)for the changes in the estimated treatment effects.RESULTS UC-MSCs significantly improved LVEF vs controls by 5.08%[95%confidence interval(CI):2.20%-7.95%]at 6 mo and 2.78%(95%CI:0.86%-4.70%)at 12 mo.However,no significant effect was observed for BM-MSCs vs controls.No significant changes were observed in the 6MWD with either of the two cell types.Also,no differences were observed for MACEs,except rehospitalization rates,which were lower only with BM-MSCs(odds ratio 0.48,95%CI:0.24-0.97)vs controls.CONCLUSION UC-MSCs significantly improved LVEF compared with BM-MSCs.Their advant-Safwan M et al.Tissue-source and MSCs as living biodrugs ageous characteristics position them as a promising alternative to MSC-based therapy. 展开更多
关键词 Cardiovascular disease Heart disease mesenchymal stem cells Umbilical cord stem cells
下载PDF
Repair of a large patellar cartilage defect using human umbilical cord blood-derived mesenchymal stem cells:A case report 被引量:2
17
作者 Jun-Seob Song Ki-Taek Hong +1 位作者 Ki Jeon Song Seok Jung Kim 《World Journal of Clinical Cases》 SCIE 2022年第34期12665-12670,共6页
BACKGROUND Patellar dislocation may cause cartilage defects of various sizes.Large defects commonly require surgical treatment;however,conventional treatments are problematic.CASE SUMMARY A 15-year-old male with a lar... BACKGROUND Patellar dislocation may cause cartilage defects of various sizes.Large defects commonly require surgical treatment;however,conventional treatments are problematic.CASE SUMMARY A 15-year-old male with a large patellar cartilage defect due to patellar dislocation was treated via human umbilical cord blood-derived mesenchymal stem cell(hUCB-MSC)implantation.To our knowledge,this is the first report of this treatment for this purpose.The patient recovered well as indicated by good visual analog scale,International Knee Documentation Committee and McMaster Universities Osteoarthritis Index scores.Magnetic resonance imaging showed cartilage regeneration 18 mo postoperatively.CONCLUSION Umbilical cord blood-derived hUCB-MSCs may be a useful treatment option for the repair of large patellar cartilage defects. 展开更多
关键词 Cartilage defect Umbilical cord mesenchymal stem cells Patellar dislocation Magnetic resonance imaging Case report
下载PDF
Human umbilical cord blood mesenchymal stem cells conditioned media inhibits hypoxia-induced apoptosis in H9c2 cells by activation of the survival protein Akt 被引量:1
18
作者 XUHE GONG GUANGPU FAN +2 位作者 HUI LIU SIJIA WANG RONGCHONG HUANG 《BIOCELL》 SCIE 2020年第3期329-336,共8页
This work aimed to study the beneficial role of human umbilical cord blood-derived mesenchymal stem cellconditioned medium(MSC-CM)in hypoxia-induced apoptosis in H9c2 cardiomyoblasts,in which the serine/heroine kinase... This work aimed to study the beneficial role of human umbilical cord blood-derived mesenchymal stem cellconditioned medium(MSC-CM)in hypoxia-induced apoptosis in H9c2 cardiomyoblasts,in which the serine/heroine kinases(Akt)pathway would be involved.For this,CM was collected by culturing MSCs in serum-free DMEM medium for 24 h,and paracrine factors were analyzed by protein chip.H9c2 cells were divided into the following groups:control group,hypoxia group,MSC-CM intervention group(CM group),MSC-CM+Akt phosphorylation inhibitor(LY294002)group(LY group).Apoptosis of the H9c2 cells was tested with chromatin dye Hoechst 33342 and FITC-conjugated Annexin V apoptosis detection kit by flow cytometer after a hypoxia/serum deprivation(H/SD)for 24 h.The apoptosis-related proteins were evaluated by Western blot.MSC-CM displayed significantly elevated levels of growth factors,anti-inflammatory,and anti-apoptosis cytokines.On Hoechst 33342 apoptosis staining,the H9c2 cell morphology displayed a lower proportion of apoptosis in the CM group than those in the hypoxia group,while apoptosis was increased in LY group.Flow cytometer analysis revealed the apoptosis ratio in the CM group was lower than the hypoxia group(12.34±2.00%vs.21.73±2.58%,p<0.05),while the LY group was significantly higher(22.54±3.89%).Active caspase-3 expression was increased in hypoxia group than control group(p<0.05),but decreased in CM group(p<0.01).Umbilical cord blood-derived mesenchymal stem cell-conditioned media secrete multiple paracrine factors that are able to inhibit hypoxia-induced H9c2 cardiomyoblasts apoptosis,and in which the activation of Akt phosphorylation is involved to achieve the protective effect. 展开更多
关键词 UMBILICAL cord blood mesenchymal stem cells PARACRINE actions H9C2 cells ANTI-APOPTOSIS caspase-3 Akt
下载PDF
Umbilical cord blood mesenchymal stem cells protect amyloid-β42 neurotoxicity via paracrine 被引量:1
19
作者 Ju-Yeon Kim Dong Hyun Kim +4 位作者 Ji Hyun Kim Yoon Sun Yang Wonil Oh Eun Hui Lee Jong Wook Chang 《World Journal of Stem Cells》 SCIE CAS 2012年第11期110-116,共7页
AIM:To understand the neuroprotective mechanism of human umbilical cord blood-derived mesenchymal stem cells(hUCB-MSCs) against amyloid-β42(Aβ42) exposed rat primary neurons.METHODS:To evaluate the neuroprotective e... AIM:To understand the neuroprotective mechanism of human umbilical cord blood-derived mesenchymal stem cells(hUCB-MSCs) against amyloid-β42(Aβ42) exposed rat primary neurons.METHODS:To evaluate the neuroprotective effect of hUCB-MSCs,the cells were co-cultured with Aβ42-exposed rat primary neuronal cells in a Transwell apparatus.To assess the involvement of soluble fac-tors released from hUCB-MSCs in neuroprotection,an antibody-based array using co-cultured media was conducted.The neuroprotective roles of the identified hUCB-MSC proteins was assessed by treating recombi-nant proteins or specific small interfering RNAs(siRNAs) for each candidate protein in a co-culture system.RESULTS:The hUCB-MSCs secreted elevated levels ofdecorin and progranulin when co-cultured with rat pri-mary neuronal cells exposed to Aβ42.Treatment with recombinant decorin and progranulin protected from Aβ42-neurotoxicity in vitro.In addition,siRNA-mediat-ed knock-down of decorin and progranulin production in hUCB-MSCs reduced the anti-apoptotic effects of hUCB-MSC in the co-culture system.CONCLUSION:Decorin and progranulin may be involved in anti-apoptotic activity of hUCB-MSCs exposed to Aβ42. 展开更多
关键词 Human UMBILICAL cord blood-derived mes-enchymal stem cells DECORIN Progranulin AΒ42 ANTI-APOPTOSIS
下载PDF
Therapeutic and regenerative potential of different sources of mesenchymal stem cells for cardiovascular diseases
20
作者 YARA ALZGHOUL HALA J.BANI ISSA +8 位作者 AHMAD K.SANAJLEH TAQWA ALABDUH FATIMAH RABABAH MAHA AL-SHDAIFAT EJLAL ABU-EL-RUB FATIMAH ALMAHASNEH RAMADA R.KHASAWNEH AYMAN ALZU’BI HUTHAIFA MAGABLEH 《BIOCELL》 SCIE 2024年第4期559-569,共11页
Mesenchymalstemcells(MSCs)areidealcandidatesfortreatingmanycardiovasculardiseases.MSCscanmodify the internal cardiac microenvironment to facilitate their immunomodulatory and differentiation abilities,which are essent... Mesenchymalstemcells(MSCs)areidealcandidatesfortreatingmanycardiovasculardiseases.MSCscanmodify the internal cardiac microenvironment to facilitate their immunomodulatory and differentiation abilities,which are essential to restore heart function.MSCs can be easily isolated from different sources,including bone marrow,adipose tissues,umbilical cord,and dental pulp.MSCs from various sources differ in their regenerative and therapeutic abilities for cardiovascular disorders.In this review,we will summarize the therapeutic potential of each MSC source for heart diseases and highlight the possible molecular mechanisms of each source to restore cardiac function. 展开更多
关键词 Bone marrow mesenchymal stem cells Adipose tissue mesenchymal stem cells Dental pulp stem cells Umbilical cord mesenchymal stem cells CARDIOMYOCYTES Regeneration Myocardial infarction mesenchymal stem cells DIFFERENTIATION IMMUNOMODULATION
下载PDF
上一页 1 2 155 下一页 到第
使用帮助 返回顶部