Nowadays,it is a great challenge to reduce energy consumption and exhaust emission for human activities,in particular,high temperature industries.Among many efforts made to realize energy savings for high temperature ...Nowadays,it is a great challenge to reduce energy consumption and exhaust emission for human activities,in particular,high temperature industries.Among many efforts made to realize energy savings for high temperature furnaces and kilns,the use of high emissivity materials is considered to be an effective route to increase their thermal efficiency by enhancing heat transfer.Most materials with high refractoriness and superior chemical stability have weak infrared absorption and radiation properties;however,their emissivity in infrared regions(1 —25 μm) could be effectively increased by ion doping.This is attributed to three main mechanisms:1) distortion of the crystal lattice;2) increase of free carrier absorption; 3) formation of impurity energy level.In this paper,the development and advancement of various material systems with high emissivity including non-oxides and oxide based ceramics were reviewed.It is also suggested that the establishment of evaluation models or instruments for energy savings would be beneficial to design and application of high emissivity materials in various high-temperature environment.Furthermore,more efforts should be made on durability of high emissivity materials at high service temperatures and on the standardization of testing methods for emissivity.展开更多
The fabrication of Fe2O3-MnO2-Co2O3-CuO system ceramics, and the composite system ceramics of transitional metal oxides-cordierite and transitional metal oxides-kaolinit are presented in this work. The research was ca...The fabrication of Fe2O3-MnO2-Co2O3-CuO system ceramics, and the composite system ceramics of transitional metal oxides-cordierite and transitional metal oxides-kaolinit are presented in this work. The research was carried out with the main attention to the infrared emissivity in the band of 8 similar to 14 mu m at room temperature, the microstructure of the ceramics and the relation between them. High infrared emissivities exceeding 0.9 in the band of 8 similar to 14 mu m at room temperature were gained in the transitional metal oxide ceramics and the composite system ceramics. It is suggested that the formation of inverse spinels and partially inverse spinels, such as Fe3O4, CoFe2O4, CuFe2O4 and CuMn2O4, is beneficial to the enhancement of the infrared emissivity of the transitional metal oxide ceramics. The transitional metal oxides play an important role in determining the infrared emissivity of the composite system ceramics.展开更多
A kind of far infrared radiation ceramics was prepared by using silicate minerals, calcium carbonate and silicon dioxide as main raw materials, and cerium nitrate as additive. The structure of the ceramics and far inf...A kind of far infrared radiation ceramics was prepared by using silicate minerals, calcium carbonate and silicon dioxide as main raw materials, and cerium nitrate as additive. The structure of the ceramics and far infrared radiation properties on the surface tension of water were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy and a tensiometer, respectively. It was showed that, after being sintered at 1160 ℃, the solid solution was formed by CeO2 and Fe2O3, thus the crystal parameters (c/a axis ratio) and interplanar spacing of Fe2O3 increased. The addition of cerium was regarded to improve the far infrared radiation of ceramics, and the maximum emissivity value in the range of 5-20 μm was 0.94. The surface tension of water gradually decreased with increasing radiation time.展开更多
Boron for aluminum substitution in the cordierite structure has been examined by sol-gel preparation of different samples along the compositional junction Mg2Al4-xBxSi5O18 with x=0,0.5,1,1.5.By increasing the x value ...Boron for aluminum substitution in the cordierite structure has been examined by sol-gel preparation of different samples along the compositional junction Mg2Al4-xBxSi5O18 with x=0,0.5,1,1.5.By increasing the x value from 0 to 1.5 the crystallization behavior changed accordingly.Proper amount B2O3 doping can promote the sintering of amorphous cordierite gel,effectively restrain the precipitation of μ-cordierite and enhance the crystallization of α-cordierite.The substitution of B3+ for Al3+ in cordierite crystal structure can effectively improve the near-infrared spectral emissivity of this cordierite based glass-ceramics.展开更多
Far infrared(FIR)radiation(3-100µm)is an electromagnetic spectrum commonly studied for biological effects.This article aims to discuss using Far infrared radiation with sub-division(4-24µm)of this waveband t...Far infrared(FIR)radiation(3-100µm)is an electromagnetic spectrum commonly studied for biological effects.This article aims to discuss using Far infrared radiation with sub-division(4-24µm)of this waveband to stimulate tissues and cells and is considered an effective therapeutic modality for specific medical disorders.The IR application as a medical therapy has advanced rapidly in recent years.For example,IR therapy like IR-emitting apparel and materials that can be run solely by body heat(does not need an external power supply)have been developed.New methods for providing FIR radiation to the human body have emerged due to technological advancements.Specialty saunas and lamps that emit pure FIR radiation have become effective,safe,and widely used therapeutic sources.Fibers infused with thermide,FIR emitting ceramic nanomaterials and knitted into fabrics are used as clothes and apparel to produce FIR radiation and benefit from its effects.A deeper understanding of FIR's significant innovations and biological implications could aid in improving therapeutic efficacy or developing new methods that use FIR wavelengths.展开更多
基金Natural Science Foundation of China ( NSFC,Grant no. 51372255 )Beijing Natural Science Foundation ( BNSF,Grant no. 2131006 )+2 种基金International Science and Technology Cooperation Program of China ( Grant no. 2014DFR51010)External Cooperation Program of Chinese Academy of Sciences ( Grant no. GJHZ201310 )Open Foundation of State Key Laboratory of Advanced Refractories ( Grant no. 201401,Sinosteel Luoyang Institute of Refractories Research Co. ,Ltd. ) for the financial support
文摘Nowadays,it is a great challenge to reduce energy consumption and exhaust emission for human activities,in particular,high temperature industries.Among many efforts made to realize energy savings for high temperature furnaces and kilns,the use of high emissivity materials is considered to be an effective route to increase their thermal efficiency by enhancing heat transfer.Most materials with high refractoriness and superior chemical stability have weak infrared absorption and radiation properties;however,their emissivity in infrared regions(1 —25 μm) could be effectively increased by ion doping.This is attributed to three main mechanisms:1) distortion of the crystal lattice;2) increase of free carrier absorption; 3) formation of impurity energy level.In this paper,the development and advancement of various material systems with high emissivity including non-oxides and oxide based ceramics were reviewed.It is also suggested that the establishment of evaluation models or instruments for energy savings would be beneficial to design and application of high emissivity materials in various high-temperature environment.Furthermore,more efforts should be made on durability of high emissivity materials at high service temperatures and on the standardization of testing methods for emissivity.
基金The research is supported by the Foundation for Excellent Youth of Wuhan Science and Technology Commission and Opening Foundation of Stae Key Laboratory of Advanced Technology for Materials Synthesis and Process of Wuhan University of Technology.
文摘The fabrication of Fe2O3-MnO2-Co2O3-CuO system ceramics, and the composite system ceramics of transitional metal oxides-cordierite and transitional metal oxides-kaolinit are presented in this work. The research was carried out with the main attention to the infrared emissivity in the band of 8 similar to 14 mu m at room temperature, the microstructure of the ceramics and the relation between them. High infrared emissivities exceeding 0.9 in the band of 8 similar to 14 mu m at room temperature were gained in the transitional metal oxide ceramics and the composite system ceramics. It is suggested that the formation of inverse spinels and partially inverse spinels, such as Fe3O4, CoFe2O4, CuFe2O4 and CuMn2O4, is beneficial to the enhancement of the infrared emissivity of the transitional metal oxide ceramics. The transitional metal oxides play an important role in determining the infrared emissivity of the composite system ceramics.
基金Project supported by the National Key Technology R&D Program(2011BAE30B04)University Innovation Team Leader Training Program in Hebei Province(LJRC020)
文摘A kind of far infrared radiation ceramics was prepared by using silicate minerals, calcium carbonate and silicon dioxide as main raw materials, and cerium nitrate as additive. The structure of the ceramics and far infrared radiation properties on the surface tension of water were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy and a tensiometer, respectively. It was showed that, after being sintered at 1160 ℃, the solid solution was formed by CeO2 and Fe2O3, thus the crystal parameters (c/a axis ratio) and interplanar spacing of Fe2O3 increased. The addition of cerium was regarded to improve the far infrared radiation of ceramics, and the maximum emissivity value in the range of 5-20 μm was 0.94. The surface tension of water gradually decreased with increasing radiation time.
基金supported by the National Nature Science Foundation of China (No. 50771014)
文摘Boron for aluminum substitution in the cordierite structure has been examined by sol-gel preparation of different samples along the compositional junction Mg2Al4-xBxSi5O18 with x=0,0.5,1,1.5.By increasing the x value from 0 to 1.5 the crystallization behavior changed accordingly.Proper amount B2O3 doping can promote the sintering of amorphous cordierite gel,effectively restrain the precipitation of μ-cordierite and enhance the crystallization of α-cordierite.The substitution of B3+ for Al3+ in cordierite crystal structure can effectively improve the near-infrared spectral emissivity of this cordierite based glass-ceramics.
文摘Far infrared(FIR)radiation(3-100µm)is an electromagnetic spectrum commonly studied for biological effects.This article aims to discuss using Far infrared radiation with sub-division(4-24µm)of this waveband to stimulate tissues and cells and is considered an effective therapeutic modality for specific medical disorders.The IR application as a medical therapy has advanced rapidly in recent years.For example,IR therapy like IR-emitting apparel and materials that can be run solely by body heat(does not need an external power supply)have been developed.New methods for providing FIR radiation to the human body have emerged due to technological advancements.Specialty saunas and lamps that emit pure FIR radiation have become effective,safe,and widely used therapeutic sources.Fibers infused with thermide,FIR emitting ceramic nanomaterials and knitted into fabrics are used as clothes and apparel to produce FIR radiation and benefit from its effects.A deeper understanding of FIR's significant innovations and biological implications could aid in improving therapeutic efficacy or developing new methods that use FIR wavelengths.