期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Validation of the TASS/SMR-S Code for the Core Heat Transfer Model on the Steady Experimental Conditions
1
作者 In Sub Jun Kyoo Hwan Bae Young Jong Chung Won Jae Lee 《Journal of Energy and Power Engineering》 2012年第3期338-345,共8页
The SMART (System-integrated Modular Advanced ReacTor) which is a 330 MWt advanced integral PWR was developed by the KAERI (Korea Atomic Energy Institute) for electricity generation and seawater desalination. To e... The SMART (System-integrated Modular Advanced ReacTor) which is a 330 MWt advanced integral PWR was developed by the KAERI (Korea Atomic Energy Institute) for electricity generation and seawater desalination. To enhance its safety, the various design concepts were adopted such as the most containing of the RCS (reactor coolant system) components and a PRHRS (passive residual heat removal system). To ensure the safety and performance of the SMART, a thermal hydraulic evaluation and safety analysis are performed by the TASS/SMR-S code. It uses a one dimensional node/path modeling and point kinetics for the core power simulation. The code also has specific models reflecting the design features of the SMART such as a helical tube and PRHRS heat transfer models. In this study, the validation of the core heat transfer model in the TASS/SMR-S code on the steady conditions was performed with the Bennett's heated tube tests and THTF (thermal hydraulic test facility) experiment. From the results of the TASS/SMR-S code calculation, the CHF (critical heat flux) point and the fuel rod surface temperature were predicted conservatively compared to the test results. 展开更多
关键词 SMART TASS/SMR-S code core heat transfer model Bennett tube test THTF experiment.
下载PDF
CFD-Based Optimization of a Diesel Engine Waste Heat Recycle System
2
作者 Da Li Guodong Zhang +2 位作者 Ke Sun Shuzhan Bai Guoxiang Li 《Fluid Dynamics & Materials Processing》 EI 2023年第6期1479-1493,共15页
A dedicated heat exchanger model is introduced for the optimization of heavy-duty diesel engines.The model is a prerequisite for the execution of CFD simulations,which are used to improve waste heat recovery in these ... A dedicated heat exchanger model is introduced for the optimization of heavy-duty diesel engines.The model is a prerequisite for the execution of CFD simulations,which are used to improve waste heat recovery in these systems.Several optimization methods coupled with different types of working fluids are compared in terms of exergy efficiency and heat exchanger complicity.The three considered optimization methods all lead to significant improvements in the R245fa and R1233zd systems with a comparatively low evaporation temperature.The optimal R245fa system has the highest efficiency increase(77.49%).The cyclopentane system displays the highest efficiency among the optimized ORC(Organic Rankine Cycle)systems,yet achieved by using a much heavier evaporator HEC(Heat Exchanging Core).In contrast,the 96.84%efficiency increase for the optimized R1233zd is achieved with only 68.96%evaporator weight. 展开更多
关键词 Tube-fin heat exchanger heat exchanging core organic rankine cycle working fluid
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部