We demonstrate the generation of supercontinuum (SC) of over 1350 nm by injecting 790-nm, 15-fs, 74-MHz optical pulses into a 183-mm-long microstructured fiber with combination core and random cladding. The maximum to...We demonstrate the generation of supercontinuum (SC) of over 1350 nm by injecting 790-nm, 15-fs, 74-MHz optical pulses into a 183-mm-long microstructured fiber with combination core and random cladding. The maximum total power of SC is 73 mW with 290-mW pump power from 40x microscope objective. The wavelength and power ranging in SC as well as the polarization states and waveguide modes of the visible light can be tuned by adjusting the input end of MF.In particular, white light has been observed. To our knowledge, this is the first report of tunable properties in SC generation process using microstructured fiber with combination core and random cladding.展开更多
具有高容量的LiNiO_(2)(LNO)是高能锂离子电池最受欢迎的正极材料之一,但是其存在结构和界面稳定性差,循环性能不理想等问题.常规Mg、Al元素掺杂可有效改善稳定性,但会导致可逆容量及倍率性能的损失.本文通过分段的共沉淀法制备了铝镁...具有高容量的LiNiO_(2)(LNO)是高能锂离子电池最受欢迎的正极材料之一,但是其存在结构和界面稳定性差,循环性能不理想等问题.常规Mg、Al元素掺杂可有效改善稳定性,但会导致可逆容量及倍率性能的损失.本文通过分段的共沉淀法制备了铝镁不均匀掺杂的LNO二次球形前驱体,利用不均匀掺杂减少了掺杂剂用量并诱导实现了前驱体表面形貌的重构,煅烧后形成具有疏松多孔表层形貌的二次颗粒.改性后的LNO正极具有良好的循环稳定性(全电池150次循环后容量保持率为95.1%)和大倍率放电能力(10 C时达到177.9 mA h g^(-1)),这是由于比表面积的增加促进了锂离子传输,以及镁、铝的掺杂缓解了LNO循环过程中的有害相变.该工作揭示了通过设计掺杂元素的分布可以有效地调节LNO的形貌、结构和性能,为合成高性能的LNO正极材料提供了新的策略.展开更多
This paper proposes a hexagonal photonic crystal fiber (H-PCF) structure with high relative sensitivity for liquid sensing; in which both core and cladding are microstructures. Numerical investigation is carried out...This paper proposes a hexagonal photonic crystal fiber (H-PCF) structure with high relative sensitivity for liquid sensing; in which both core and cladding are microstructures. Numerical investigation is carried out by employing the full vectorial finite element method (FEM). The analysis has been done in four stages of the proposed structure. The investigation shows that the proposed structure achieves higher relative sensitivity by increasing the diameter of the innermost ring air holes in the cladding. Moreover, placing a single channel instead of using a group of tiny channels increases the relative sensitivity effectively. Investigating the effects of different parameters, the optimized structure shows significantly higher relative sensitivity with a low confinement loss.展开更多
基金This work was supPorted by the Henan Cultivatlon Project for University Innovatlon Thlents.
文摘We demonstrate the generation of supercontinuum (SC) of over 1350 nm by injecting 790-nm, 15-fs, 74-MHz optical pulses into a 183-mm-long microstructured fiber with combination core and random cladding. The maximum total power of SC is 73 mW with 290-mW pump power from 40x microscope objective. The wavelength and power ranging in SC as well as the polarization states and waveguide modes of the visible light can be tuned by adjusting the input end of MF.In particular, white light has been observed. To our knowledge, this is the first report of tunable properties in SC generation process using microstructured fiber with combination core and random cladding.
基金supported by the National Natural Science Foundation of China(21925503 and 21835004)Jiangsu Specially-Appointed Professorship Foundation(1064902003)+1 种基金the Doctoral Scientific Research Foundation of Jiangsu University of Science and Technology(1062932001 and 1062932211)the Program for High-Level Entrepreneurial and Innovative Talents Introduction of Jiangsu Province(Double Innovation PhD,1064902009)。
文摘具有高容量的LiNiO_(2)(LNO)是高能锂离子电池最受欢迎的正极材料之一,但是其存在结构和界面稳定性差,循环性能不理想等问题.常规Mg、Al元素掺杂可有效改善稳定性,但会导致可逆容量及倍率性能的损失.本文通过分段的共沉淀法制备了铝镁不均匀掺杂的LNO二次球形前驱体,利用不均匀掺杂减少了掺杂剂用量并诱导实现了前驱体表面形貌的重构,煅烧后形成具有疏松多孔表层形貌的二次颗粒.改性后的LNO正极具有良好的循环稳定性(全电池150次循环后容量保持率为95.1%)和大倍率放电能力(10 C时达到177.9 mA h g^(-1)),这是由于比表面积的增加促进了锂离子传输,以及镁、铝的掺杂缓解了LNO循环过程中的有害相变.该工作揭示了通过设计掺杂元素的分布可以有效地调节LNO的形貌、结构和性能,为合成高性能的LNO正极材料提供了新的策略.
文摘This paper proposes a hexagonal photonic crystal fiber (H-PCF) structure with high relative sensitivity for liquid sensing; in which both core and cladding are microstructures. Numerical investigation is carried out by employing the full vectorial finite element method (FEM). The analysis has been done in four stages of the proposed structure. The investigation shows that the proposed structure achieves higher relative sensitivity by increasing the diameter of the innermost ring air holes in the cladding. Moreover, placing a single channel instead of using a group of tiny channels increases the relative sensitivity effectively. Investigating the effects of different parameters, the optimized structure shows significantly higher relative sensitivity with a low confinement loss.