Core strength training is mainly directed against the entire trunk and pelvic muscles, with special emphasis on training those in the deep small muscle group. Human torso plays an important role of rigid connection du...Core strength training is mainly directed against the entire trunk and pelvic muscles, with special emphasis on training those in the deep small muscle group. Human torso plays an important role of rigid connection during exercise. It can effectively converge and integrate the power of the body parts, which plays a strong leverage for the athletes of the coordinated development of motor skills. As far as basketball is concerned, strong core strength can be more stable, and cab fix basketball athlete' s body posture, integrating the body organically with the development of all aspects, and making the upper and lower extremities more coordinated with each other, helping improve athletic level.展开更多
In track and field sports,the 100-meter race is an extremely intense sport that requires effective training of athletes’core strength.From the perspective of adolescents,in order to enhance core strength,it is necess...In track and field sports,the 100-meter race is an extremely intense sport that requires effective training of athletes’core strength.From the perspective of adolescents,in order to enhance core strength,it is necessary to effectively fix the pelvic position in the process of exercise,so that the core stability,balance,and coordination of athletes can be improved.The training process of the 100-meter event is mainly an anaerobic metabolic exercise,it is necessary to ensure that athletes maintain a high level of physical readiness during the exercises and concentrate highly on their core strength,so that they can achieve excellent results.This paper analyzes the core strength training for the 100-meter event in track and field sports,discusses its importance,and puts forward specific training methods,hoping to provide guidelines for relevant researchers.展开更多
With the popularity of tennis in the sports world,more and more beginners are joining this sport.However,for beginners,how to improve motor skills and game performance is still an important issue.Core strength trainin...With the popularity of tennis in the sports world,more and more beginners are joining this sport.However,for beginners,how to improve motor skills and game performance is still an important issue.Core strength training has potential as a potential adjunct to improve overall fitness and skill in athletes.Therefore,this research aimed to explore the potential impact of core strength training on the motor skills of tennis beginners to provide better training strategies and guidance for coaches and athletes.展开更多
Since free combat is a competitive sport that flexibly utilizes kicking,punching,wrestling,and holding techniques to defeat the opponent,a good core strength of athletes can help to improve the technical level,enhance...Since free combat is a competitive sport that flexibly utilizes kicking,punching,wrestling,and holding techniques to defeat the opponent,a good core strength of athletes can help to improve the technical level,enhance the quality of movements,and protect the joints and muscles.In order to carry out core strength training in free combat teaching with high quality,firstly,it is necessary for coaches to carry out simple training,centralized training,and extended training according to the basic planning of adaptation-stabilization-improvement.Secondly,it is also important to test the athlete’s physical and athletic qualities before implementing the specific training plan,optimize the training program,and carry out statistical analysis of the stage training data in order to achieve the best training effect.展开更多
Water soluble cores(WSCs) have been widely applied in manufacture of complex metal components with hollow configurations or internal channels. However, the WSCs without any additons have low tensile strength and low h...Water soluble cores(WSCs) have been widely applied in manufacture of complex metal components with hollow configurations or internal channels. However, the WSCs without any additons have low tensile strength and low humidity resistance. The purpose of this study is to prepare a water-soluble potassium carbonate sand core with addition of kaolin by the hot-temping method. The effects of kaolin on tensile strength, humidity resistance, fracture mechanism, as well as the gas evolution and collapsibility of WSCs were investigated. Results show that both the crystal morphology and the fracture mechanism of the inorganic salt are changed under the participation of kaolin, contributing to the increase of the tensile strength and the humidity resistance of the core. With the addition of 3wt.% kaolin, the tensile strength could be increased by a factor of 2, reached 1.50 MPa and the hygroscopic rate could be decreased by 14%, achieved 0.559%(after stored for 8 h), respectively. As the addition amount of kaolin increases from 0wt.% to 3wt.%, the main fracture mechanism changes from a adhesive to a cohesive fracture mechanism. The water-soluble potassium carbonate core obtained has the low gas evolution and excellent collapsibility, which makes it suitable for casting low melting metal with complex cavities and crooked channels.展开更多
The Sonreb and Core (SRC) combined method is proposed to assess the concrete compression strength of mass concrete structures.Artificial neural network is employed together with the SRC combined method to obtain the o...The Sonreb and Core (SRC) combined method is proposed to assess the concrete compression strength of mass concrete structures.Artificial neural network is employed together with the SRC combined method to obtain the optimal core number.The artificial neural network is trained based on data from different testing methods.The procedure of using artificial neural network to assess the concrete strength is described.It proves that the SRC combined method is superior in many aspects and artificial the presented neural network has a high efficiency and reliability.The combined method using artificial intelligence is promising in the strength assessment of mass concrete structures such as the dam,the anchor of the suspension bridge,etc.展开更多
By using Visual C++, a model with post processing was carried out to simulate the temperature and strength distributions of the mold(core). The results are shown in 256 color graphic mode. With this model, the tempera...By using Visual C++, a model with post processing was carried out to simulate the temperature and strength distributions of the mold(core). The results are shown in 256 color graphic mode. With this model, the temperature and strength distributions of the mold(core) both in case of heating process for core in the furnace and solidification process for a thin wall aluminum alloy casting in the mold(core) are numerically simulated. The results show that the temperature and strength distributions of the mold(core) were uneven because the thermal conductivity of the resin sand was much small. This study laid a basis for the optimum design of the mold(core) properties. [展开更多
Precast prestressed Hollow Core Slabs (HCS), are one of the famous and widely used slabs for concrete structures all over the world and widely implemented in the Middle East. HCS are used in industrial, commercial, re...Precast prestressed Hollow Core Slabs (HCS), are one of the famous and widely used slabs for concrete structures all over the world and widely implemented in the Middle East. HCS are used in industrial, commercial, residential buildings, as well as, in the parking structures. This paper succeeded to present new special details for deep HCS to enhance and strengthen the web shear strength capacity of HCS 400 and 500 mm depths respectively at the open parking area. This is subjected to heavy truck wheel loads so as to achieve the LRFD Code’s requirements. However, it is noticed many web shear cracks of HCS are used at parking area at many projects in Gulf Region. On the other hand, ACI318-14 permits no shear reinforcement in prestressed HCS thickness of less than 12.5 in (320 mm). The paper presents experimental tests program, to verify the numerical finite element of deep HCS under maximum design uniform loads, in addition to the new strengthening techniques. New strengthening techniques succeed to enhance the web shear capacity by significant percentage, due to the new details for HCS 400 by 68% up to 256% increasing of the web shear capacity compared to the ordinary HCS section. Also, HCS 500 shear capacity is enhanced with different percentages of strengthening techniques by 55%, up to 197% based on the different cases of strengthening. Furthermore enhancing deep HCS shear performance;the new techniques have an advantage of an easy execution at the site;casting with structural topping, otherwise the preparation can be done in precast factory before site handover, which saves time and cost compared to the others traditional strengthening techniques.展开更多
Purpose:To determine the intra-tester reliability of clinical measurements that assess five components related to core stability:strength. endurance,flexibility,motor control,and function. Methods:Participants were 15...Purpose:To determine the intra-tester reliability of clinical measurements that assess five components related to core stability:strength. endurance,flexibility,motor control,and function. Methods:Participants were 15 college-aged males who had not suffered any orthopedic injury in the past year.Core strength measurements included eight isometric tests and a sit-up test.The four core endurance tests were the trunk flexor test,trunk extensor test,and bilateral side bridge tests.Flexibility tests included the sit-and-reach test and active range of the trunk and hip joint motions.Proprioception via passive reposition tests of the hips and a single limb balance test on an unsteady platform were used to evaluate core motor control.Functional measurements consisted of a squat test and a single leg hop test for time and distance.Measurements were performed during two data collection sessions with a week’s rest between the sessions.Intra-class correlation coefficients were calculated to establish reliability. Results:The overall intra-rater reliability for all core stability related measurements ranged from low(ICC = 0.35,left hip reposition) to very high(ICC = 0.98,sit-and-reach).As a group,the core endurance tests were observed to be the most reliable. Conclusion:There are highly reliable tests in each of the five groups.Overall,core endurance tests are the most reliable measurements,followed by the flexibility,strength,neuromuscular control,and functional tests,respectively.展开更多
Ultra-violet(UV)curing is an efficient method for composite molding.Firstly,thermophysical properties of UV cured glass-fiber reinforced plastics are conducted.Material properties are studied for various kinds of post...Ultra-violet(UV)curing is an efficient method for composite molding.Firstly,thermophysical properties of UV cured glass-fiber reinforced plastics are conducted.Material properties are studied for various kinds of postcuring modes.Then the UV curing method is suggested in manufacturing V-crimp folded core for sandwich panels.Two kinds of processing schemes for V-crimp folded core manufacturing using UV curing are presented.Finally,the effect of post-curing on the mechanical properties of folded core sandwiches is experimentally studied,and optimum modes of post-curing are determined.The experimental results show that the ultimate compressive strength of the folded sandwiches is increased by 60% after post-curing with the optimum post-curing mode.展开更多
In order to investigate how to enhance the teeth fracture resistance after the post and core treatment, an in vitro study was conducted to measure the fracture resistance of endodontically treated teeth restored with ...In order to investigate how to enhance the teeth fracture resistance after the post and core treatment, an in vitro study was conducted to measure the fracture resistance of endodontically treated teeth restored with cast post and core with two kinds of surface treatment technology and acid etching preparation on the dentinal surface. Sixty-four recently extracted human single-rooted first premolars were endodontically treated and sectioned approximately 1.5 mm above the cementoenamel junction to remove the coronal portion. Each specimen received a cast post, core build-up and a metal alloy crown restoration. All teeth were randomly divided into the smooth surface post, core repair group, the sand blasting surface post, and core repair group, each group was divided into 10 s, 30 s, 60 s acid corrosion treatment group and control group. In acid test groups, an acid etching solution was applied for 10, 30 and 60 seconds, respectively, to the root canal wall surface. Each specimen was embedded in acrylic resin block and tested in an electronic universal testing machine. Fracture loads results showed that canal acid etching could increase teeth fracture resistance strength both in smooth groups and sandblasting group, and achieved the best effect when acid etching for 30 s. Sand spray treatment on the surface of the cast metal post can improve the flexural strength of the teeth after postcrown restoration. Acid etching on the root canal wall surfaces and sand spray treatment on the surface of the cast metal post can improve the flexural strength of the root after post-crown restoration. Therefore, these two methods could be used to strengthen the tooth fracture resistance, and maintain the long-term therapeutic effect of cast post and core restoration.展开更多
Polyoxymethylene (POM)/elastomer/filler ternary composites were prepared, in which thermoplastic polyurethane (TPU) and inorganic filler, namely, CaCO3, were used to achieve balanced mechanical properties of POM. ...Polyoxymethylene (POM)/elastomer/filler ternary composites were prepared, in which thermoplastic polyurethane (TPU) and inorganic filler, namely, CaCO3, were used to achieve balanced mechanical properties of POM. The dispersion and phase morphology of POM/elastomer/filler composites were found to depend largely on processing method, CaCO3 content in masterbatch and the filler size. Two processing methods were employed to prepare POM/elastomer/filler ternary composites. One is called the one-step method, in which elastomer and the filler directly melt blended with POM matrix. The other is called the two-step method, in which the elastomer and the filler were mixed to get masterbatch first, which was then melt blended with pure POM of different content. The effect of phase morphology and processing method on impact strength was investigated. It was found that the two-step method results in an increase in impact strength but not for the one-step method. Additionally, the impact strength of POM ternary composites decreases with the increase in the size of CaCO3 particles.展开更多
In this study, the relationship between skin structure and shear strength distribution of thin-wall injection molded polypropylene (PP) molded at different molecular weight and molecular distribution was investigated....In this study, the relationship between skin structure and shear strength distribution of thin-wall injection molded polypropylene (PP) molded at different molecular weight and molecular distribution was investigated. Skin-core structure, cross-sectional morphology, crystallinity, crystal orientation, crystal morphology and molecular orientation were evaluated by using polarized optical microscope, differential scanning calorimeter, X-ray spectroscopic analyzer and laser Raman spectroscopy, respectively, while the shear strength distribution was investigated using a micro cutting method called SAICAS (Surface And Interfacial Cutting Analysis System). The results indicated that the difference of molecular weight and molecular weight distribution showed own skin layer thickness. Especially, high molecular weight sample showed thicker layer of the lamellar orientation and molecular orientation than low molecular weight sample. In addition, wide molecular distribution sample showed large crystal orientation layer.展开更多
文摘Core strength training is mainly directed against the entire trunk and pelvic muscles, with special emphasis on training those in the deep small muscle group. Human torso plays an important role of rigid connection during exercise. It can effectively converge and integrate the power of the body parts, which plays a strong leverage for the athletes of the coordinated development of motor skills. As far as basketball is concerned, strong core strength can be more stable, and cab fix basketball athlete' s body posture, integrating the body organically with the development of all aspects, and making the upper and lower extremities more coordinated with each other, helping improve athletic level.
文摘In track and field sports,the 100-meter race is an extremely intense sport that requires effective training of athletes’core strength.From the perspective of adolescents,in order to enhance core strength,it is necessary to effectively fix the pelvic position in the process of exercise,so that the core stability,balance,and coordination of athletes can be improved.The training process of the 100-meter event is mainly an anaerobic metabolic exercise,it is necessary to ensure that athletes maintain a high level of physical readiness during the exercises and concentrate highly on their core strength,so that they can achieve excellent results.This paper analyzes the core strength training for the 100-meter event in track and field sports,discusses its importance,and puts forward specific training methods,hoping to provide guidelines for relevant researchers.
文摘With the popularity of tennis in the sports world,more and more beginners are joining this sport.However,for beginners,how to improve motor skills and game performance is still an important issue.Core strength training has potential as a potential adjunct to improve overall fitness and skill in athletes.Therefore,this research aimed to explore the potential impact of core strength training on the motor skills of tennis beginners to provide better training strategies and guidance for coaches and athletes.
文摘Since free combat is a competitive sport that flexibly utilizes kicking,punching,wrestling,and holding techniques to defeat the opponent,a good core strength of athletes can help to improve the technical level,enhance the quality of movements,and protect the joints and muscles.In order to carry out core strength training in free combat teaching with high quality,firstly,it is necessary for coaches to carry out simple training,centralized training,and extended training according to the basic planning of adaptation-stabilization-improvement.Secondly,it is also important to test the athlete’s physical and athletic qualities before implementing the specific training plan,optimize the training program,and carry out statistical analysis of the stage training data in order to achieve the best training effect.
基金supported by the National Natural Science Foundation of China(No.51405002)
文摘Water soluble cores(WSCs) have been widely applied in manufacture of complex metal components with hollow configurations or internal channels. However, the WSCs without any additons have low tensile strength and low humidity resistance. The purpose of this study is to prepare a water-soluble potassium carbonate sand core with addition of kaolin by the hot-temping method. The effects of kaolin on tensile strength, humidity resistance, fracture mechanism, as well as the gas evolution and collapsibility of WSCs were investigated. Results show that both the crystal morphology and the fracture mechanism of the inorganic salt are changed under the participation of kaolin, contributing to the increase of the tensile strength and the humidity resistance of the core. With the addition of 3wt.% kaolin, the tensile strength could be increased by a factor of 2, reached 1.50 MPa and the hygroscopic rate could be decreased by 14%, achieved 0.559%(after stored for 8 h), respectively. As the addition amount of kaolin increases from 0wt.% to 3wt.%, the main fracture mechanism changes from a adhesive to a cohesive fracture mechanism. The water-soluble potassium carbonate core obtained has the low gas evolution and excellent collapsibility, which makes it suitable for casting low melting metal with complex cavities and crooked channels.
基金Sponsored by the Priority Academic Program Development Foundation of Jiangsu Higher Education Institute(Grant No. CE01-3)the NSFC for Outstanding Youth Fund (Grant No. 50725828),the NSFC for Young Scholars (Grant No. 50908046)+1 种基金the Ph. D. Programs Foundation of Ministry of Education of China (Grant No. 200802861012)the Basic Scientific & Research Fund of Southeast University (Grant No. Seucx201106)
文摘The Sonreb and Core (SRC) combined method is proposed to assess the concrete compression strength of mass concrete structures.Artificial neural network is employed together with the SRC combined method to obtain the optimal core number.The artificial neural network is trained based on data from different testing methods.The procedure of using artificial neural network to assess the concrete strength is described.It proves that the SRC combined method is superior in many aspects and artificial the presented neural network has a high efficiency and reliability.The combined method using artificial intelligence is promising in the strength assessment of mass concrete structures such as the dam,the anchor of the suspension bridge,etc.
文摘By using Visual C++, a model with post processing was carried out to simulate the temperature and strength distributions of the mold(core). The results are shown in 256 color graphic mode. With this model, the temperature and strength distributions of the mold(core) both in case of heating process for core in the furnace and solidification process for a thin wall aluminum alloy casting in the mold(core) are numerically simulated. The results show that the temperature and strength distributions of the mold(core) were uneven because the thermal conductivity of the resin sand was much small. This study laid a basis for the optimum design of the mold(core) properties. [
文摘Precast prestressed Hollow Core Slabs (HCS), are one of the famous and widely used slabs for concrete structures all over the world and widely implemented in the Middle East. HCS are used in industrial, commercial, residential buildings, as well as, in the parking structures. This paper succeeded to present new special details for deep HCS to enhance and strengthen the web shear strength capacity of HCS 400 and 500 mm depths respectively at the open parking area. This is subjected to heavy truck wheel loads so as to achieve the LRFD Code’s requirements. However, it is noticed many web shear cracks of HCS are used at parking area at many projects in Gulf Region. On the other hand, ACI318-14 permits no shear reinforcement in prestressed HCS thickness of less than 12.5 in (320 mm). The paper presents experimental tests program, to verify the numerical finite element of deep HCS under maximum design uniform loads, in addition to the new strengthening techniques. New strengthening techniques succeed to enhance the web shear capacity by significant percentage, due to the new details for HCS 400 by 68% up to 256% increasing of the web shear capacity compared to the ordinary HCS section. Also, HCS 500 shear capacity is enhanced with different percentages of strengthening techniques by 55%, up to 197% based on the different cases of strengthening. Furthermore enhancing deep HCS shear performance;the new techniques have an advantage of an easy execution at the site;casting with structural topping, otherwise the preparation can be done in precast factory before site handover, which saves time and cost compared to the others traditional strengthening techniques.
文摘Purpose:To determine the intra-tester reliability of clinical measurements that assess five components related to core stability:strength. endurance,flexibility,motor control,and function. Methods:Participants were 15 college-aged males who had not suffered any orthopedic injury in the past year.Core strength measurements included eight isometric tests and a sit-up test.The four core endurance tests were the trunk flexor test,trunk extensor test,and bilateral side bridge tests.Flexibility tests included the sit-and-reach test and active range of the trunk and hip joint motions.Proprioception via passive reposition tests of the hips and a single limb balance test on an unsteady platform were used to evaluate core motor control.Functional measurements consisted of a squat test and a single leg hop test for time and distance.Measurements were performed during two data collection sessions with a week’s rest between the sessions.Intra-class correlation coefficients were calculated to establish reliability. Results:The overall intra-rater reliability for all core stability related measurements ranged from low(ICC = 0.35,left hip reposition) to very high(ICC = 0.98,sit-and-reach).As a group,the core endurance tests were observed to be the most reliable. Conclusion:There are highly reliable tests in each of the five groups.Overall,core endurance tests are the most reliable measurements,followed by the flexibility,strength,neuromuscular control,and functional tests,respectively.
基金supported by the Ministry of Education and Science of Russian Federation (No.RFMEFI57414X0078)
文摘Ultra-violet(UV)curing is an efficient method for composite molding.Firstly,thermophysical properties of UV cured glass-fiber reinforced plastics are conducted.Material properties are studied for various kinds of postcuring modes.Then the UV curing method is suggested in manufacturing V-crimp folded core for sandwich panels.Two kinds of processing schemes for V-crimp folded core manufacturing using UV curing are presented.Finally,the effect of post-curing on the mechanical properties of folded core sandwiches is experimentally studied,and optimum modes of post-curing are determined.The experimental results show that the ultimate compressive strength of the folded sandwiches is increased by 60% after post-curing with the optimum post-curing mode.
基金Funded by the Construction Engineering Special Fund of Taishan Scholars(No.201511106)the Youth Scientific Research Funds of School of Stomatology,Shandong University(No.2018QNJJ01)+1 种基金Shandong Medical and Health Science and Technology Development Plan(No.2017WS112)National Key Research and Development Program of China(No.2016YFC1102705)
文摘In order to investigate how to enhance the teeth fracture resistance after the post and core treatment, an in vitro study was conducted to measure the fracture resistance of endodontically treated teeth restored with cast post and core with two kinds of surface treatment technology and acid etching preparation on the dentinal surface. Sixty-four recently extracted human single-rooted first premolars were endodontically treated and sectioned approximately 1.5 mm above the cementoenamel junction to remove the coronal portion. Each specimen received a cast post, core build-up and a metal alloy crown restoration. All teeth were randomly divided into the smooth surface post, core repair group, the sand blasting surface post, and core repair group, each group was divided into 10 s, 30 s, 60 s acid corrosion treatment group and control group. In acid test groups, an acid etching solution was applied for 10, 30 and 60 seconds, respectively, to the root canal wall surface. Each specimen was embedded in acrylic resin block and tested in an electronic universal testing machine. Fracture loads results showed that canal acid etching could increase teeth fracture resistance strength both in smooth groups and sandblasting group, and achieved the best effect when acid etching for 30 s. Sand spray treatment on the surface of the cast metal post can improve the flexural strength of the teeth after postcrown restoration. Acid etching on the root canal wall surfaces and sand spray treatment on the surface of the cast metal post can improve the flexural strength of the root after post-crown restoration. Therefore, these two methods could be used to strengthen the tooth fracture resistance, and maintain the long-term therapeutic effect of cast post and core restoration.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.20274028,50373030 and 20490220)This work is also partly supported by Ministry of Education of China for Doctoral Degree(No.20020610004).
文摘Polyoxymethylene (POM)/elastomer/filler ternary composites were prepared, in which thermoplastic polyurethane (TPU) and inorganic filler, namely, CaCO3, were used to achieve balanced mechanical properties of POM. The dispersion and phase morphology of POM/elastomer/filler composites were found to depend largely on processing method, CaCO3 content in masterbatch and the filler size. Two processing methods were employed to prepare POM/elastomer/filler ternary composites. One is called the one-step method, in which elastomer and the filler directly melt blended with POM matrix. The other is called the two-step method, in which the elastomer and the filler were mixed to get masterbatch first, which was then melt blended with pure POM of different content. The effect of phase morphology and processing method on impact strength was investigated. It was found that the two-step method results in an increase in impact strength but not for the one-step method. Additionally, the impact strength of POM ternary composites decreases with the increase in the size of CaCO3 particles.
文摘In this study, the relationship between skin structure and shear strength distribution of thin-wall injection molded polypropylene (PP) molded at different molecular weight and molecular distribution was investigated. Skin-core structure, cross-sectional morphology, crystallinity, crystal orientation, crystal morphology and molecular orientation were evaluated by using polarized optical microscope, differential scanning calorimeter, X-ray spectroscopic analyzer and laser Raman spectroscopy, respectively, while the shear strength distribution was investigated using a micro cutting method called SAICAS (Surface And Interfacial Cutting Analysis System). The results indicated that the difference of molecular weight and molecular weight distribution showed own skin layer thickness. Especially, high molecular weight sample showed thicker layer of the lamellar orientation and molecular orientation than low molecular weight sample. In addition, wide molecular distribution sample showed large crystal orientation layer.