The X-ray fluorescence(XRF)core scanning method is widely applied in studies of sedimentary paleoenvironments due to its convenient pretreatment,nondestructive characteristics,fast execution,continuous scanning,and hi...The X-ray fluorescence(XRF)core scanning method is widely applied in studies of sedimentary paleoenvironments due to its convenient pretreatment,nondestructive characteristics,fast execution,continuous scanning,and high resolution.XRF core scanning for sediments is commonly used in the studies on the South China Sea.This study compares XRF-scanned intensities and measured inductively coupled plasma(ICP)elemental contents of core CS11 in the northeast South China Sea deep basin.The results show that the analyzed elements can be separated into three classes.Class I includes elements with high correlation coefficients,such as Ca,Sr,and Zr;Class II contains elements with average correlation coefficients,such as Fe,Mn,Ti,and Cu;and Class III comprises elements with low correlation coefficients,such as K,Ni,Zn,Rb,and Al.In the South China Sea deep basin,pore water,compaction,and grain size have weak effects on the elemental intensities and contents of short core sediments.Hence,for elements with high correlation coefficients,a linear relationship model can be established by the least-squares method,in which the converted XRF intensities are approximately equal to the measured ICP contents.Based on the established log-ratio calibration model,the resulting ln(K/Ca),ln(Ti/Ca),ln(Fe/Ca),and ln(Zr/Ca)values generally display the same variation trends as the measured curves.The elemental contents and ratios produced by the linear model via the least-squares method and the log-ratio calibration model are expected to provide high-resolution data support for future paleoenvironmental research on the South China Sea deep basin.展开更多
Automated core scanning technologies for mineralogical characterisation of diamond core, drill chips pulps is now an established technique, particularly in the Australian iron ore industry, for mineral analysis in exp...Automated core scanning technologies for mineralogical characterisation of diamond core, drill chips pulps is now an established technique, particularly in the Australian iron ore industry, for mineral analysis in exploration and mining. Application of reflectance spectroscopy over the 400–2500 nm, visible to near-infrared wavelength range, has been used to characterise the iron ore oxide mineralogy of bedded iron deposit (BID) derived iron ores in India (Thangavelu et al., 2011) and Brazil (da Costa et al., 2009), and used to define the ore and gangue (e.g., clay) mineralogy in ironstone or channel iron deposits (CID) in the Pilbara region of Western Australia (e.g., Haest et al., 2012).展开更多
Using a special coated sand as the material of the selected laser sintering (SLS), the authors test and investigate the strength change of the test samples in terms of different sintering parameters (scanning speed, l...Using a special coated sand as the material of the selected laser sintering (SLS), the authors test and investigate the strength change of the test samples in terms of different sintering parameters (scanning speed, laser power, sintering thickness, and so on). The characteristics of coated sand hardening by laser beam are analyzed. The sintered mold (or core) for given casting is poured with molten metal.展开更多
In this paper, we take DLW3101 core obtained at the top of the canyon(no landslide area) and DLW3102 core obtained at the bottom of the canyon(landslide area) on the northern continental slope of the South China Sea a...In this paper, we take DLW3101 core obtained at the top of the canyon(no landslide area) and DLW3102 core obtained at the bottom of the canyon(landslide area) on the northern continental slope of the South China Sea as research objects. The chronostratigraphic framework of the DLW3101 core and elemental strata of the DLW3101 core and the DLW3102 core since MIS5 are established by analyzing oxygen isotope, calcium carbonate content, and X-Ray Fluorescence(XRF) scanning elements. On the basis of the information obtained by analyzing the sedimentary structure and chemical elements in the landslide deposition, we found that the DLW3102 core shows four layers of submarine landslides, and each landslide layer is characterized by high Si, K, Ti, and Fe contents, thereby indicating terrigenous clastic sources. L1(2.15–2.44 m) occurred in MIS2, which is a slump sedimentary layer with a small sliding distance and scale. L2(15.48–16.00 m) occurred in MIS5 and is a debris flow-deposited layer with a scale and sliding distance that are greater than those of L1. L3(19.00–20.90 m) occurred in MIS5; its upper part(19.00–20.00 m) is a debris flow-deposited layer, and its lower part(20.00–20.90 m) is a sliding deposition layer. The landslide scale of L3 is large. L4(22.93–24.27 m) occurred in MIS5; its upper part(22.93–23.50 m) is a turbid sedimentary layer, and its lower part(23.50–24.27m) is a slump sedimentary layer. The landslide scale of L4 is large.展开更多
Aiming at the time redundancy in the fiat panel display (FPD) imaging process, the paper studied some problems for FPD gray scale controlling based on the fraetal theory, dissertates the construction of the space-ti...Aiming at the time redundancy in the fiat panel display (FPD) imaging process, the paper studied some problems for FPD gray scale controlling based on the fraetal theory, dissertates the construction of the space-time mapping topology architecture, the proposition of optimal scanning structure for FPD's gray imaging, and the creation of the fractal theoretic model. Then the logic implementation and system application are presented based on the fraetal model of the optimal scan architecture, and the application results achieved target of eliminating time redundancy and increasing the scanning availability. The novel control mode that the fractal scanning IP core described with Verilog language embedded in the FPGA hardware frame can efficiently increase the imaging gray scales and quality in the FPDs scanning controller and speed up the frame frequency of display system.展开更多
基金This study was jointly supported by the National Natural Science Foundation of China(Nos.41576058 and 41976192)the Project of China Geological Survey(No.DD20191010)+2 种基金the Shandong Provincial Natural Science Foundation of China(No.ZR2020MD061)the Open Foundation of the State Key Laboratory of Loess and Quaternary Geology(Nos.SKLLQG1707 and SKLLQG1805)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB40000000).
文摘The X-ray fluorescence(XRF)core scanning method is widely applied in studies of sedimentary paleoenvironments due to its convenient pretreatment,nondestructive characteristics,fast execution,continuous scanning,and high resolution.XRF core scanning for sediments is commonly used in the studies on the South China Sea.This study compares XRF-scanned intensities and measured inductively coupled plasma(ICP)elemental contents of core CS11 in the northeast South China Sea deep basin.The results show that the analyzed elements can be separated into three classes.Class I includes elements with high correlation coefficients,such as Ca,Sr,and Zr;Class II contains elements with average correlation coefficients,such as Fe,Mn,Ti,and Cu;and Class III comprises elements with low correlation coefficients,such as K,Ni,Zn,Rb,and Al.In the South China Sea deep basin,pore water,compaction,and grain size have weak effects on the elemental intensities and contents of short core sediments.Hence,for elements with high correlation coefficients,a linear relationship model can be established by the least-squares method,in which the converted XRF intensities are approximately equal to the measured ICP contents.Based on the established log-ratio calibration model,the resulting ln(K/Ca),ln(Ti/Ca),ln(Fe/Ca),and ln(Zr/Ca)values generally display the same variation trends as the measured curves.The elemental contents and ratios produced by the linear model via the least-squares method and the log-ratio calibration model are expected to provide high-resolution data support for future paleoenvironmental research on the South China Sea deep basin.
文摘Automated core scanning technologies for mineralogical characterisation of diamond core, drill chips pulps is now an established technique, particularly in the Australian iron ore industry, for mineral analysis in exploration and mining. Application of reflectance spectroscopy over the 400–2500 nm, visible to near-infrared wavelength range, has been used to characterise the iron ore oxide mineralogy of bedded iron deposit (BID) derived iron ores in India (Thangavelu et al., 2011) and Brazil (da Costa et al., 2009), and used to define the ore and gangue (e.g., clay) mineralogy in ironstone or channel iron deposits (CID) in the Pilbara region of Western Australia (e.g., Haest et al., 2012).
文摘Using a special coated sand as the material of the selected laser sintering (SLS), the authors test and investigate the strength change of the test samples in terms of different sintering parameters (scanning speed, laser power, sintering thickness, and so on). The characteristics of coated sand hardening by laser beam are analyzed. The sintered mold (or core) for given casting is poured with molten metal.
基金supported by the National Natural Science Foundation of China (No. 41506071)the NSFCShandong Joint Fund for Marine Science Research Centers (No. U1606401)the National Program on Global Change and Air-Sea Interaction (No. GASI-GEO-GE-0503)
文摘In this paper, we take DLW3101 core obtained at the top of the canyon(no landslide area) and DLW3102 core obtained at the bottom of the canyon(landslide area) on the northern continental slope of the South China Sea as research objects. The chronostratigraphic framework of the DLW3101 core and elemental strata of the DLW3101 core and the DLW3102 core since MIS5 are established by analyzing oxygen isotope, calcium carbonate content, and X-Ray Fluorescence(XRF) scanning elements. On the basis of the information obtained by analyzing the sedimentary structure and chemical elements in the landslide deposition, we found that the DLW3102 core shows four layers of submarine landslides, and each landslide layer is characterized by high Si, K, Ti, and Fe contents, thereby indicating terrigenous clastic sources. L1(2.15–2.44 m) occurred in MIS2, which is a slump sedimentary layer with a small sliding distance and scale. L2(15.48–16.00 m) occurred in MIS5 and is a debris flow-deposited layer with a scale and sliding distance that are greater than those of L1. L3(19.00–20.90 m) occurred in MIS5; its upper part(19.00–20.00 m) is a debris flow-deposited layer, and its lower part(20.00–20.90 m) is a sliding deposition layer. The landslide scale of L3 is large. L4(22.93–24.27 m) occurred in MIS5; its upper part(22.93–23.50 m) is a turbid sedimentary layer, and its lower part(23.50–24.27m) is a slump sedimentary layer. The landslide scale of L4 is large.
基金supported by the Key Laboratory of Advanced Display and System Applications(Shanghai University),Ministry of Education,China(Grant No.P200803)the Science and Technology Commission of Shanghai Municipality(Grant No.09ZR1412000)
文摘Aiming at the time redundancy in the fiat panel display (FPD) imaging process, the paper studied some problems for FPD gray scale controlling based on the fraetal theory, dissertates the construction of the space-time mapping topology architecture, the proposition of optimal scanning structure for FPD's gray imaging, and the creation of the fractal theoretic model. Then the logic implementation and system application are presented based on the fraetal model of the optimal scan architecture, and the application results achieved target of eliminating time redundancy and increasing the scanning availability. The novel control mode that the fractal scanning IP core described with Verilog language embedded in the FPGA hardware frame can efficiently increase the imaging gray scales and quality in the FPDs scanning controller and speed up the frame frequency of display system.