In this study, novel core-shell SiO<sub>2</sub>-coated iron nanoparticles (SiO<sub>2</sub>-nZVI) were synthesized using a one-step Stoeber method. The Malachite green degradation abilities of t...In this study, novel core-shell SiO<sub>2</sub>-coated iron nanoparticles (SiO<sub>2</sub>-nZVI) were synthesized using a one-step Stoeber method. The Malachite green degradation abilities of the nanoparticles were investigated. The effects of ethanol/distilled water volume ratio, presence and absence of PEG, tetraethyl orthosilicate (TEOS) dosage, and hydrolysis time used in the nanoparticles preparation process were investigated. The results indicated that the SiO<sub>2</sub>-coated iron nanoparticles had the highest reduction activity when the particles synthesized with ethanol/H<sub>2</sub>O ratio of 2:1, PEG of 0.15 ml, TEOS of 0.5 ml and the reaction time was 4 h. The SiO<sub>2</sub>-nZVI nanoparticles were characterized using Transmission Electron Microscopy (TEM), Energy Dispersive Spectrometry (EDS) and powder X-Ray Diffraction (XRD). The results showed that the average particles diameter of the SiO<sub>2</sub>-nZVI was 20 - 30 nm. The thickness of the outside SiO<sub>2</sub> film is consistent and approximately 10 nm. The results indicated that the nanoparticles coated completely with a transparent SiO<sub>2</sub>-film. Such nanoparticles could have wide applications in dye decolorization.展开更多
Cu2O@Cu2O core-shell nanoparticles (NPs) were prepared by using solution phase strategy. It was found that Cu2O@Cu2O NPs were easily converted to Cu2O@Cu NPs with the help of polyvinylpyrrolidine (PVP) and excessive a...Cu2O@Cu2O core-shell nanoparticles (NPs) were prepared by using solution phase strategy. It was found that Cu2O@Cu2O NPs were easily converted to Cu2O@Cu NPs with the help of polyvinylpyrrolidine (PVP) and excessive ascorbic acid (AA) in air at room temperature, which was an interesting phenomenon. The features of the two kinds of NPs were characterized by XRD, TEM and extinction spectra. Cu2O@Cu NPs with different shell thicknesses showed wide tunable optical properties for the localized surface plasmon (LSP) in metallic Cu. But Cu2O@Cu2O NPs did not indicate this feature. FTIR results reveal that Cu+ ions on the surface of Cu2O shell coordinate with N and O atoms in PVP and are further reduced to metallic Cu by excessive AA and then form a nucleation site on the surface of Cu2O nanocrystalline. PVP binds onto different sites to proceed with the reduction utill all the Cu sources in Cu2O shell are completely assumed.展开更多
Eu3+ doped-CdTe(CdTe:Eu3+)nanocrystals were prepared via a facile hydrothermal method,and Eu3+ was successfully incorporated into the crystal lattice of CdTe and measured by X-ray powder diffraction(XRD),transmission ...Eu3+ doped-CdTe(CdTe:Eu3+)nanocrystals were prepared via a facile hydrothermal method,and Eu3+ was successfully incorporated into the crystal lattice of CdTe and measured by X-ray powder diffraction(XRD),transmission electron microscopy(TEM),ultraviolet-visible(UV-Vis) absorption spectroscopy and fluorescence emission.The CdTe:Eu^3+ nanocrystals still have a cubic crystal structure,and the corresponding XRD peaks of CdTe:Eu3+nanocrystals shift to larger angles compared with those of pure CdTe.The CdTe:Eu3+ nanocrystals are monodisperse and the particles size is about 2-4 nm.Compared with pure CdTe,the CdTe:Eu^3+ nanocrystals have larger band gap and thus exhibit blueshift in the emission spectra,which could be accounted for by the energy transfer between Eu^3+ and CdTe.To enhance the stability and functionality of CdTe:Eu3+nanocrystals,the CdTe:Eu3+nanocrystals were coated with SiO2 and the core-shell SiO2-coated CdTe:Eu3+nanocrystals(CdTe:Eu^3+@SiO2) were prepared via microemulsion method.TEM results show that CdTe:Eu3+nanocrystals are uniformly dispersed in the shell,and CdTe:Eu3+@SiO2 nanospheres are uniformly spherical with an average diameter of about 75 nm.The fluorescence emission of CdTe:Eu3+@SiO2(567 nm) shows a blueshift compared with that of CdTe:Eu^3+nanocrystals(632 nm),possibly because of altered surface properties after SiO2 coating.CdTe:Eu^3+and CdTe:Eu^3+@SiO2 with tunable photoluminescence are potentially useful in fabricating optical and bioimaging devices.展开更多
PS/SiO2 particles with core-shell structure were synthesized by coating silica on surface of polystyrene(PS) colloidal particles.The reaction parameters,such as initial tetraethyl orthosilicate(TEOS) concentration,wat...PS/SiO2 particles with core-shell structure were synthesized by coating silica on surface of polystyrene(PS) colloidal particles.The reaction parameters,such as initial tetraethyl orthosilicate(TEOS) concentration,water concentration and reaction temperature,have been investigated to control the thickness of silica shells.The shell thickness was prepositional to the square root of the initial concentration of TEOS and first increased with increasing water concentration,reached a maximum at about 2.0 mol/L and then started decreasing beyond that concentration.It was also found that the shell thickness decreased firstly with the reaction temperature added,then tended to a constant.The so-synthesized PS/SiO2 core-shell particles were directly crystallized into 3-D ordered thin film,then sintered at 570℃ into the ordered macroporous thin film.Compared with the conditional method,the present approach avoids repeatedly filling the precursor in the templetes and save time more.展开更多
A facile method for preparing monodisperse NaYF4@SiO2@Au core-shell nanocomposite was developed. Transmission electron microscopy(TEM) as well as EDX(energy dispersive X-ray) was used to characterize the samples. The ...A facile method for preparing monodisperse NaYF4@SiO2@Au core-shell nanocomposite was developed. Transmission electron microscopy(TEM) as well as EDX(energy dispersive X-ray) was used to characterize the samples. The TEM showed the composite was a core-shell structure, spherical,with the uniform size of about 100 nm. TEM and EDX revealed that the NPs were coated with a layer of SiO2 and Au shell. The core shell structure of NaYF4@SiO2@Au nanocomposite could dispersed in water easily. More importantly,after being coated with SiO2 and Au, it was feasible for function by-SH and-NH2 groups, respectively. The forming process of the Au shell was monitored with TEM. The mechanism of coating Au shell was discussed in detail. It is expected that the core shell nanoparticle will act as multifunctional molecular imaging probes, such as positron emission tomography(PET), magnetic resonance imaging(MRI), optical imaging(OI), or contrast agent for sensing and detection.展开更多
The vertically aligned one-dimensional(1 D)core-shell structure can maximize the exposure and use of the functionally active surface while maintaining the geometric effects caused by the underlying structure.Herein,we...The vertically aligned one-dimensional(1 D)core-shell structure can maximize the exposure and use of the functionally active surface while maintaining the geometric effects caused by the underlying structure.Herein,we have fabricated 1 D vertically aligned ZnO/V2O5 core-shell hetero-nanostructure nanorod arrays(NRs)for photoelectrochemical(PEC)water splitting.ZnO/V2O5 NRs were prepared through the hydrothermal growing of ZnO NRs and then radio frequency(RF)magnetron sputtering deposition of V2O5 for 300,600 and 900 s.The photocurrent density of ZnO/V2O5-based photoanodes was gradually increased with the sputtering time,reaching the maximum value of 1.21 m A/cm^2 at 1.23 V vs.reversible hydrogen electrode(RHE)for ZnO/V2O5-600,whereas for pure ZnO-based photoanode was 0.42 mA/cm^2.The incident photon to electron conversion efficiency(IPCE)of ZnO/V2O5-600 evaluated to be 82.3%which was 2.3 times higher than that of ZnO(36.4%).The improved PEC performance of ZnO/V2O5-600 is because the core-shell structure with a moderate thickness of the V2O5 layer has the extremely high carrier density,largest electrochemically active surface area(ECSA),largest carrier density,lowest charge recombination rate,and the longest lifetime of e-h pairs due to the formation of the staggered gap junction.This study provides an effective way to design and fabrication of hetero-nanostructures for highefficiency photoelectrodes.展开更多
Ce O2@Si O2 core-shell nanoparticles were prepared by microemulsion method, and metalloporphyrins were immobilized on the Ce O2@Si O2 core-shell nanoparticles surface via amide bond. The supported metalloporphyrin cat...Ce O2@Si O2 core-shell nanoparticles were prepared by microemulsion method, and metalloporphyrins were immobilized on the Ce O2@Si O2 core-shell nanoparticles surface via amide bond. The supported metalloporphyrin catalysts were characterized by N2 adsorption-desorption isotherm(BET), scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), ultraviolet and visible spectroscopy(UV-Vis), and Fourier transform infrared spectroscopy(FT-IR). The results show that the morphology of Ce O2@Si O2 nanoparticles is core-shell microspheres with about 30 nm in diameter, and metalloporphyrins are immobilized on the Ce O2@Si O2 core-shell nanoparticles via amide bond. Especially, the core-shell structure contains multi Ce O2 core and thin Si O2 shell, which may benefit the synergistic effect between the Ce O2 core and the porphyrin anchored on the very thin Si O2 shell. As a result, this supported metalloporphyrin catalysts present comparably high catalytic activity and stability for oxidation of ethylbenzene with molecular oxygen, namely, ethylbenzene conversion remains around 12% with identical selectivity of about 80% for acetophenone even after six-times reuse of the catalyst.展开更多
Photodegradation has emerged as an environmentally friendly method of decomposing harmful dyes in wastewater. In this study, core-shell Fe3O4/SiO2/ TiO2 nanospheres with magnetic cores were obtained from synthesised m...Photodegradation has emerged as an environmentally friendly method of decomposing harmful dyes in wastewater. In this study, core-shell Fe3O4/SiO2/ TiO2 nanospheres with magnetic cores were obtained from synthesised magnetic Fe3O4 nanoparticles through the precipitation method, the surface of the magnetic Fe3O4 nanoparticles was coated with a silica (SiO2) layer by hydrolysis of tetramethoxysilane (TMOS) as a silica source, and finally, Fe3O4/SiO2 nanospheres were coated with titanium (TiO2) layer using tetrabutyltitanate (TBT) as a precursor through the sol-gel process. The morphology and structure of the prepared materials were characterised by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), X-ray energy dispersive spectrometry (EDAX), Fourier transform infrared spectroscopy (FT-IR), and atomic force microscopy (AFM). The photocatalytic activities of the prepared core-shell nanospheres were studied using binary azo dyes, namely methyl orange (anionic dye, MO) and methylene blue (cationic dye, MB) in aqueous solution under UV light irradiation (365 nm), and UV-Vis spectrophotometer was utilised to monitor the amount of each dye in the mixture. It was found that 90.2% and 100% of binary MO and MB were removed for 5 h, respectively. The results revealed that the efficiency of the photocatalytic degradation of the core-shell nanospheres was not degreased after five runs that can be used as recyclable photocatalysts. The results show that the performance of the prepared core-shell nanospheres was better than that of commercial TiO2 nanoparticles. Moreover, the magnetic separation properties of the core-shell Fe3O4/SiO2/TiO2 nanospheres can enable the prepared materials to have wider application prospects.展开更多
Unlike previous emulsion polymerization, we used grafting reactions in soap-free emulsion systems. In this study, we synthesized grafted PMMA/PEI core-shell nanoparticles by varying the MMA/PEI content and molecular w...Unlike previous emulsion polymerization, we used grafting reactions in soap-free emulsion systems. In this study, we synthesized grafted PMMA/PEI core-shell nanoparticles by varying the MMA/PEI content and molecular weight of PEI (M<sub>n</sub> = 600, 8000, and 10,000). The size and morphology of the core-shell nanoparticles were characterized by a particle size analyzer and scanning electron microscopy. The nanoparticles were 178 - 408 nm in diameter and swelled in water or methanol by 30 - 75 nm. The size of the nanoparticles increased with MMA contents, whereas the size distribution progressively became homogeneous with increasing molecular weight of PEI. Lastly, we measured CO<sub>2</sub> adsorption capacity of the grafted PMMA/PEI core-shell nanoparticles, and we found the capacity to be limited at a level of 0.69 mg, which occurred for nanoparticles prepared from emulsions at a pH value of 11.展开更多
TiO_(2)is the dominant and most widely researched photocatalyst for environmental remediation,however,the drawbacks,such as only responding to UV light(<5%of sunlight),low charge separation efficiency,and difficult...TiO_(2)is the dominant and most widely researched photocatalyst for environmental remediation,however,the drawbacks,such as only responding to UV light(<5%of sunlight),low charge separation efficiency,and difficulties in recycling,have severely hindered its practical application.Herein,we synthesized magnetically separable Fe_(3)O_(4)@MoS_(2)@mesoporous TiO_(2)(FMmT)photocatalysts via a simple,green,and template-free solvothermal method combined with ultrasonic hydrolysis.It is found that FMmT possesses a high specific surface area(55.09 m2·g−1),enhanced visible-light responsiveness(~521 nm),and remarkable photogenerated charge separation efficiency.In addition,the photocatalytic degradation efficiencies of FMmT for methylene blue(MB),rhodamine B(RhB),and tetracycline(TC)are 99.4%,98.5%,and 89.3%within 300 min,respectively.The corresponding degradation rates are 4.5,4.3,and 3.1 times higher than those of pure TiO_(2)separately.Owing to the high saturation magnetization(43.1 A·m^(2)·kg^(−1)),FMmT can achieve effective recycling with an applied magnetic field.The improved photocatalytic activity is closely related to the effective transport of photogenerated electrons by the active interlayer MoS_(2) and the electron–hole separation caused by the MoS_(2)@TiO_(2)heterojunction.Meanwhile,the excellent light-harvesting ability and abundant reactive sites of the mesoporous TiO_(2)shell further boost the photocatalytic efficiency of FMmT.This work provides a new approach and some experimental basis for the design and performance improvement of magnetic photocatalysts by innovatively incorporating MoS2 as the active interlayer and integrating it with a mesoporous shell.展开更多
In this study,the Cr2O3/C@TiO2 composite was synthesized via the calcination of yolk–shell MIL-101@TiO2.The composite presented core–shell structure,where Cr-doped TiO2 and Cr2O3/C were the shell and core,respective...In this study,the Cr2O3/C@TiO2 composite was synthesized via the calcination of yolk–shell MIL-101@TiO2.The composite presented core–shell structure,where Cr-doped TiO2 and Cr2O3/C were the shell and core,respectively.The introduction of Cr^3+and Cr2O3/C,which were derived from the calcination of MIL-101,in the composite enhanced its visible light absorbing ability and lowered the recombination rate of the photogenerated electrons and holes.The large surface area of the Cr2O3/C@TiO2 composite provided numerous active sites for the photoreduction reaction.Consequently,the photocatalytic performance of the composite for the production of H2 was better than that of pure TiO2.Under the irradiation of a 300 W Xe arc lamp,the H2 production rate of the Cr2O3/C@TiO2 composite that was calcined at 500°C was 446μmol h−1 g−1,which was approximately four times higher than that of pristine TiO2 nanoparticles.Moreover,the composite exhibited the high H2 production rate of 25.5μmol h−1 g−1 under visible light irradiation(λ>420 nm).The high photocatalytic performance of Cr2O3/C@TiO2 could be attributed to its wide visible light photoresponse range and efficient separation of photogenerated electrons and holes.This paper offers some insights into the design of a novel efficient photocatalyst for water-splitting applications.展开更多
To achieve efficient photocatalytic H_(2) generation from water using earth-abundant and cost-effective materials,a simple synthesis method for carbon-doped CdS particles wrapped with graphene(C-doped CdS@G)is reporte...To achieve efficient photocatalytic H_(2) generation from water using earth-abundant and cost-effective materials,a simple synthesis method for carbon-doped CdS particles wrapped with graphene(C-doped CdS@G)is reported.The doping effect and the application of graphene as cocatalyst for CdS is studied for photocatalytic H_(2) generation.The most active sample consists of CdS and graphene(CdS-0.15G)exhibits promising photocatalytic activity,producing 3.12 mmol g^-(1) h^-(1) of H_(2) under simulated solar light which is^4.6 times superior than pure CdS nanoparticles giving an apparent quantum efficiency(AQY)of 11.7%.The enhanced photocatalytic activity for H_(2) generation is associated to the narrowing of the bandgap,enhanced light absorption,fast interfacial charge transfer,and higher carrier density(N_(D))in C-doped CdS@G samples.This is achieved by C doping in CdS nanoparticles and the formation of a graphene shell over the C-doped CdS nanoparticles.After stability test,the spent catalysts sample was also characterized to investigate the nanostructure.展开更多
Ru@RuO2 core-shell nanorods were successfully synthesized by heat-treating Ru nanorods with air oxidation through an accurate control of the temperature and time. The structure, composition, dimension, and adsorption ...Ru@RuO2 core-shell nanorods were successfully synthesized by heat-treating Ru nanorods with air oxidation through an accurate control of the temperature and time. The structure, composition, dimension, and adsorption property of the core-shell nanorods were well characterized with XRD and TEM. The catalytic activity and stability were electrochemically evaluated with a rotating disk electrode, a rotating ring-disk electrode, and chronopotentiometric methods. The Ru@RuO2 nanorods reveal excellent bifunctional catalytic activity and robust stability for both oxygen evolution reaction(OER) and hydrogen evolution reaction(HER). The overpotentials for OER and HER are 320 m V and 137 m V at the current density of10 m A cm-2, respectively. The catalytic activity of Ru@RuO2 nanorods for OER is 6.5 times higher than that of the state-of-the-art catalyst IrO2 according to the catalytic current density measured at 1.60 V(versus RHE).The catalytic activity of Ru@RuO2 nanorods for HER is comparable to 40%Pt/C by comparing the catalytic current densities at à0.2 V.展开更多
文摘In this study, novel core-shell SiO<sub>2</sub>-coated iron nanoparticles (SiO<sub>2</sub>-nZVI) were synthesized using a one-step Stoeber method. The Malachite green degradation abilities of the nanoparticles were investigated. The effects of ethanol/distilled water volume ratio, presence and absence of PEG, tetraethyl orthosilicate (TEOS) dosage, and hydrolysis time used in the nanoparticles preparation process were investigated. The results indicated that the SiO<sub>2</sub>-coated iron nanoparticles had the highest reduction activity when the particles synthesized with ethanol/H<sub>2</sub>O ratio of 2:1, PEG of 0.15 ml, TEOS of 0.5 ml and the reaction time was 4 h. The SiO<sub>2</sub>-nZVI nanoparticles were characterized using Transmission Electron Microscopy (TEM), Energy Dispersive Spectrometry (EDS) and powder X-Ray Diffraction (XRD). The results showed that the average particles diameter of the SiO<sub>2</sub>-nZVI was 20 - 30 nm. The thickness of the outside SiO<sub>2</sub> film is consistent and approximately 10 nm. The results indicated that the nanoparticles coated completely with a transparent SiO<sub>2</sub>-film. Such nanoparticles could have wide applications in dye decolorization.
基金Projects(41172110,61107090)supported by the National Natural Science Foundation of China
文摘Cu2O@Cu2O core-shell nanoparticles (NPs) were prepared by using solution phase strategy. It was found that Cu2O@Cu2O NPs were easily converted to Cu2O@Cu NPs with the help of polyvinylpyrrolidine (PVP) and excessive ascorbic acid (AA) in air at room temperature, which was an interesting phenomenon. The features of the two kinds of NPs were characterized by XRD, TEM and extinction spectra. Cu2O@Cu NPs with different shell thicknesses showed wide tunable optical properties for the localized surface plasmon (LSP) in metallic Cu. But Cu2O@Cu2O NPs did not indicate this feature. FTIR results reveal that Cu+ ions on the surface of Cu2O shell coordinate with N and O atoms in PVP and are further reduced to metallic Cu by excessive AA and then form a nucleation site on the surface of Cu2O nanocrystalline. PVP binds onto different sites to proceed with the reduction utill all the Cu sources in Cu2O shell are completely assumed.
基金financially supported by the National Natural Science Foundation of China (No.21364007)the Natural Science Foundation of Inner Mongolia (No.2016MS0201)the Program for Young Talents of Science and Technology of Baotou Teachers College (No.01135003)
文摘Eu3+ doped-CdTe(CdTe:Eu3+)nanocrystals were prepared via a facile hydrothermal method,and Eu3+ was successfully incorporated into the crystal lattice of CdTe and measured by X-ray powder diffraction(XRD),transmission electron microscopy(TEM),ultraviolet-visible(UV-Vis) absorption spectroscopy and fluorescence emission.The CdTe:Eu^3+ nanocrystals still have a cubic crystal structure,and the corresponding XRD peaks of CdTe:Eu3+nanocrystals shift to larger angles compared with those of pure CdTe.The CdTe:Eu3+ nanocrystals are monodisperse and the particles size is about 2-4 nm.Compared with pure CdTe,the CdTe:Eu^3+ nanocrystals have larger band gap and thus exhibit blueshift in the emission spectra,which could be accounted for by the energy transfer between Eu^3+ and CdTe.To enhance the stability and functionality of CdTe:Eu3+nanocrystals,the CdTe:Eu3+nanocrystals were coated with SiO2 and the core-shell SiO2-coated CdTe:Eu3+nanocrystals(CdTe:Eu^3+@SiO2) were prepared via microemulsion method.TEM results show that CdTe:Eu3+nanocrystals are uniformly dispersed in the shell,and CdTe:Eu3+@SiO2 nanospheres are uniformly spherical with an average diameter of about 75 nm.The fluorescence emission of CdTe:Eu3+@SiO2(567 nm) shows a blueshift compared with that of CdTe:Eu^3+nanocrystals(632 nm),possibly because of altered surface properties after SiO2 coating.CdTe:Eu^3+and CdTe:Eu^3+@SiO2 with tunable photoluminescence are potentially useful in fabricating optical and bioimaging devices.
基金Supported by the National Natural Science Foundation of China(No.:20221603)
文摘PS/SiO2 particles with core-shell structure were synthesized by coating silica on surface of polystyrene(PS) colloidal particles.The reaction parameters,such as initial tetraethyl orthosilicate(TEOS) concentration,water concentration and reaction temperature,have been investigated to control the thickness of silica shells.The shell thickness was prepositional to the square root of the initial concentration of TEOS and first increased with increasing water concentration,reached a maximum at about 2.0 mol/L and then started decreasing beyond that concentration.It was also found that the shell thickness decreased firstly with the reaction temperature added,then tended to a constant.The so-synthesized PS/SiO2 core-shell particles were directly crystallized into 3-D ordered thin film,then sintered at 570℃ into the ordered macroporous thin film.Compared with the conditional method,the present approach avoids repeatedly filling the precursor in the templetes and save time more.
基金Funded by the Natural Science Foundation of Shaanxi Province(No.2018JQ2057)the Ph D Research Foundation Project of Shaanxi University of Technology(No.209020195)the Scientific Research Program of Shaanxi Provincial Education Department(No.17JK0151)
文摘A facile method for preparing monodisperse NaYF4@SiO2@Au core-shell nanocomposite was developed. Transmission electron microscopy(TEM) as well as EDX(energy dispersive X-ray) was used to characterize the samples. The TEM showed the composite was a core-shell structure, spherical,with the uniform size of about 100 nm. TEM and EDX revealed that the NPs were coated with a layer of SiO2 and Au shell. The core shell structure of NaYF4@SiO2@Au nanocomposite could dispersed in water easily. More importantly,after being coated with SiO2 and Au, it was feasible for function by-SH and-NH2 groups, respectively. The forming process of the Au shell was monitored with TEM. The mechanism of coating Au shell was discussed in detail. It is expected that the core shell nanoparticle will act as multifunctional molecular imaging probes, such as positron emission tomography(PET), magnetic resonance imaging(MRI), optical imaging(OI), or contrast agent for sensing and detection.
基金supported by National Research Foundation(NRF)of Korean grant funded by the Korea government(MSIP)(Grant number:2017R1E1A1A01074550)。
文摘The vertically aligned one-dimensional(1 D)core-shell structure can maximize the exposure and use of the functionally active surface while maintaining the geometric effects caused by the underlying structure.Herein,we have fabricated 1 D vertically aligned ZnO/V2O5 core-shell hetero-nanostructure nanorod arrays(NRs)for photoelectrochemical(PEC)water splitting.ZnO/V2O5 NRs were prepared through the hydrothermal growing of ZnO NRs and then radio frequency(RF)magnetron sputtering deposition of V2O5 for 300,600 and 900 s.The photocurrent density of ZnO/V2O5-based photoanodes was gradually increased with the sputtering time,reaching the maximum value of 1.21 m A/cm^2 at 1.23 V vs.reversible hydrogen electrode(RHE)for ZnO/V2O5-600,whereas for pure ZnO-based photoanode was 0.42 mA/cm^2.The incident photon to electron conversion efficiency(IPCE)of ZnO/V2O5-600 evaluated to be 82.3%which was 2.3 times higher than that of ZnO(36.4%).The improved PEC performance of ZnO/V2O5-600 is because the core-shell structure with a moderate thickness of the V2O5 layer has the extremely high carrier density,largest electrochemically active surface area(ECSA),largest carrier density,lowest charge recombination rate,and the longest lifetime of e-h pairs due to the formation of the staggered gap junction.This study provides an effective way to design and fabrication of hetero-nanostructures for highefficiency photoelectrodes.
基金Projects(J21103045,J1210040,J1103312) supported by the National Natural Science Foundation of ChinaProject supported by the Fundamental Research Funds for the Central Universities of China
文摘Ce O2@Si O2 core-shell nanoparticles were prepared by microemulsion method, and metalloporphyrins were immobilized on the Ce O2@Si O2 core-shell nanoparticles surface via amide bond. The supported metalloporphyrin catalysts were characterized by N2 adsorption-desorption isotherm(BET), scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), ultraviolet and visible spectroscopy(UV-Vis), and Fourier transform infrared spectroscopy(FT-IR). The results show that the morphology of Ce O2@Si O2 nanoparticles is core-shell microspheres with about 30 nm in diameter, and metalloporphyrins are immobilized on the Ce O2@Si O2 core-shell nanoparticles via amide bond. Especially, the core-shell structure contains multi Ce O2 core and thin Si O2 shell, which may benefit the synergistic effect between the Ce O2 core and the porphyrin anchored on the very thin Si O2 shell. As a result, this supported metalloporphyrin catalysts present comparably high catalytic activity and stability for oxidation of ethylbenzene with molecular oxygen, namely, ethylbenzene conversion remains around 12% with identical selectivity of about 80% for acetophenone even after six-times reuse of the catalyst.
文摘Photodegradation has emerged as an environmentally friendly method of decomposing harmful dyes in wastewater. In this study, core-shell Fe3O4/SiO2/ TiO2 nanospheres with magnetic cores were obtained from synthesised magnetic Fe3O4 nanoparticles through the precipitation method, the surface of the magnetic Fe3O4 nanoparticles was coated with a silica (SiO2) layer by hydrolysis of tetramethoxysilane (TMOS) as a silica source, and finally, Fe3O4/SiO2 nanospheres were coated with titanium (TiO2) layer using tetrabutyltitanate (TBT) as a precursor through the sol-gel process. The morphology and structure of the prepared materials were characterised by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), X-ray energy dispersive spectrometry (EDAX), Fourier transform infrared spectroscopy (FT-IR), and atomic force microscopy (AFM). The photocatalytic activities of the prepared core-shell nanospheres were studied using binary azo dyes, namely methyl orange (anionic dye, MO) and methylene blue (cationic dye, MB) in aqueous solution under UV light irradiation (365 nm), and UV-Vis spectrophotometer was utilised to monitor the amount of each dye in the mixture. It was found that 90.2% and 100% of binary MO and MB were removed for 5 h, respectively. The results revealed that the efficiency of the photocatalytic degradation of the core-shell nanospheres was not degreased after five runs that can be used as recyclable photocatalysts. The results show that the performance of the prepared core-shell nanospheres was better than that of commercial TiO2 nanoparticles. Moreover, the magnetic separation properties of the core-shell Fe3O4/SiO2/TiO2 nanospheres can enable the prepared materials to have wider application prospects.
文摘Unlike previous emulsion polymerization, we used grafting reactions in soap-free emulsion systems. In this study, we synthesized grafted PMMA/PEI core-shell nanoparticles by varying the MMA/PEI content and molecular weight of PEI (M<sub>n</sub> = 600, 8000, and 10,000). The size and morphology of the core-shell nanoparticles were characterized by a particle size analyzer and scanning electron microscopy. The nanoparticles were 178 - 408 nm in diameter and swelled in water or methanol by 30 - 75 nm. The size of the nanoparticles increased with MMA contents, whereas the size distribution progressively became homogeneous with increasing molecular weight of PEI. Lastly, we measured CO<sub>2</sub> adsorption capacity of the grafted PMMA/PEI core-shell nanoparticles, and we found the capacity to be limited at a level of 0.69 mg, which occurred for nanoparticles prepared from emulsions at a pH value of 11.
基金financially supported by the National Key R & D Projects (Nos. 2021YFC1910504, 2019YFC1907101, 2019YFC1907103, and 2017YFB0702304)the Key R & D Project in Ningxia Hui Autonomous Region, China (No. 2020BCE01001)+6 种基金the Key and Normal Projects National Natural Science Foundation of China (Nos. U2002212 and 51672024)the Xijiang Innovation and Entrepreneurship Team (No. 2017A0109004)the Fundamental Research Funds for the Central Universities (Nos. FRF-BD-20-24A, FRF-TP-20-031A1, FRF-IC-19-017Z, FRF-GF-19-032B, and 06500141)the Integration of Green Key Process Systems MIIT, Natural Science Foundation of Beijing Municipality (No. 2214073)the Guangdong Basic and Applied Research Foundation, China (No. 2020A1515110408)the Foshan Science and Technology Innovation Special Foundation, China (No. BK21BE002)the Postdoctor Research Foundation of Shunde Graduate School of University of Science and Technology Beijing (No. 2020BH004)
文摘TiO_(2)is the dominant and most widely researched photocatalyst for environmental remediation,however,the drawbacks,such as only responding to UV light(<5%of sunlight),low charge separation efficiency,and difficulties in recycling,have severely hindered its practical application.Herein,we synthesized magnetically separable Fe_(3)O_(4)@MoS_(2)@mesoporous TiO_(2)(FMmT)photocatalysts via a simple,green,and template-free solvothermal method combined with ultrasonic hydrolysis.It is found that FMmT possesses a high specific surface area(55.09 m2·g−1),enhanced visible-light responsiveness(~521 nm),and remarkable photogenerated charge separation efficiency.In addition,the photocatalytic degradation efficiencies of FMmT for methylene blue(MB),rhodamine B(RhB),and tetracycline(TC)are 99.4%,98.5%,and 89.3%within 300 min,respectively.The corresponding degradation rates are 4.5,4.3,and 3.1 times higher than those of pure TiO_(2)separately.Owing to the high saturation magnetization(43.1 A·m^(2)·kg^(−1)),FMmT can achieve effective recycling with an applied magnetic field.The improved photocatalytic activity is closely related to the effective transport of photogenerated electrons by the active interlayer MoS_(2) and the electron–hole separation caused by the MoS_(2)@TiO_(2)heterojunction.Meanwhile,the excellent light-harvesting ability and abundant reactive sites of the mesoporous TiO_(2)shell further boost the photocatalytic efficiency of FMmT.This work provides a new approach and some experimental basis for the design and performance improvement of magnetic photocatalysts by innovatively incorporating MoS2 as the active interlayer and integrating it with a mesoporous shell.
文摘In this study,the Cr2O3/C@TiO2 composite was synthesized via the calcination of yolk–shell MIL-101@TiO2.The composite presented core–shell structure,where Cr-doped TiO2 and Cr2O3/C were the shell and core,respectively.The introduction of Cr^3+and Cr2O3/C,which were derived from the calcination of MIL-101,in the composite enhanced its visible light absorbing ability and lowered the recombination rate of the photogenerated electrons and holes.The large surface area of the Cr2O3/C@TiO2 composite provided numerous active sites for the photoreduction reaction.Consequently,the photocatalytic performance of the composite for the production of H2 was better than that of pure TiO2.Under the irradiation of a 300 W Xe arc lamp,the H2 production rate of the Cr2O3/C@TiO2 composite that was calcined at 500°C was 446μmol h−1 g−1,which was approximately four times higher than that of pristine TiO2 nanoparticles.Moreover,the composite exhibited the high H2 production rate of 25.5μmol h−1 g−1 under visible light irradiation(λ>420 nm).The high photocatalytic performance of Cr2O3/C@TiO2 could be attributed to its wide visible light photoresponse range and efficient separation of photogenerated electrons and holes.This paper offers some insights into the design of a novel efficient photocatalyst for water-splitting applications.
基金support from the Research Council of Norway provided by the Norwegian Center for Transmission Electron Microscopy,NORTEM(197405/F50)NTNU NanoLab(grant number 245963)which have provided the characterization toolsthe strategic funding support provided by Department of Chemical Engineering,NTNU,Trondheim,Norway.
文摘To achieve efficient photocatalytic H_(2) generation from water using earth-abundant and cost-effective materials,a simple synthesis method for carbon-doped CdS particles wrapped with graphene(C-doped CdS@G)is reported.The doping effect and the application of graphene as cocatalyst for CdS is studied for photocatalytic H_(2) generation.The most active sample consists of CdS and graphene(CdS-0.15G)exhibits promising photocatalytic activity,producing 3.12 mmol g^-(1) h^-(1) of H_(2) under simulated solar light which is^4.6 times superior than pure CdS nanoparticles giving an apparent quantum efficiency(AQY)of 11.7%.The enhanced photocatalytic activity for H_(2) generation is associated to the narrowing of the bandgap,enhanced light absorption,fast interfacial charge transfer,and higher carrier density(N_(D))in C-doped CdS@G samples.This is achieved by C doping in CdS nanoparticles and the formation of a graphene shell over the C-doped CdS nanoparticles.After stability test,the spent catalysts sample was also characterized to investigate the nanostructure.
基金the U.S.Department of the ArmyU.S.Army Materiel Command for supporting this work
文摘Ru@RuO2 core-shell nanorods were successfully synthesized by heat-treating Ru nanorods with air oxidation through an accurate control of the temperature and time. The structure, composition, dimension, and adsorption property of the core-shell nanorods were well characterized with XRD and TEM. The catalytic activity and stability were electrochemically evaluated with a rotating disk electrode, a rotating ring-disk electrode, and chronopotentiometric methods. The Ru@RuO2 nanorods reveal excellent bifunctional catalytic activity and robust stability for both oxygen evolution reaction(OER) and hydrogen evolution reaction(HER). The overpotentials for OER and HER are 320 m V and 137 m V at the current density of10 m A cm-2, respectively. The catalytic activity of Ru@RuO2 nanorods for OER is 6.5 times higher than that of the state-of-the-art catalyst IrO2 according to the catalytic current density measured at 1.60 V(versus RHE).The catalytic activity of Ru@RuO2 nanorods for HER is comparable to 40%Pt/C by comparing the catalytic current densities at à0.2 V.