期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Transition-layer of coreerim structures andβ→a transformation in SiC ceramics
1
作者 Qing-Qing Shao Hui Gu 《Journal of Materiomics》 SCIE CSCD 2023年第2期299-309,共11页
Similar to Si_(3)N_(4)ceramics,β→a phase transformation in SiC ceramics plays a key role in tailoring the microstructures thus optimizing related properties.SiC microstructures are dominated with the core erim struc... Similar to Si_(3)N_(4)ceramics,β→a phase transformation in SiC ceramics plays a key role in tailoring the microstructures thus optimizing related properties.SiC microstructures are dominated with the core erim structures by AlN-solution,and by EBSD analysis,a-lamellae were revealed as stacking-faults(SF)and twin-boundaries(TB)in b-grains,co-existing with the coreerim structures asα/β→α’/β’transformation by sintering.The structural transformation can proceed much further by gas-pressuresintering than hot-pressing with only RE2O3 agents,while the latter retain a high-density of SF/TB in the metastable b-SiC grains.By high-angle secondary-electron imaging,nanoscale transition-layer(TL)was observed as an inter-phase to fully separate the core and rim,which is created by a transitory equilibrium in the solutionereprecipitation process.The enrichment of AlN or RE in TL demonstrates their segregation to core surface until reaching the super-saturation and before the growth of rims.With higher AlN or RE solution and after sintering,a shear stress can develop from TL contour to drive the expansion of SF/TB in Martensitic transition,especially under an external isotropic pressure.The combinations ofβ→a transformation,coreerim structures and viscous liquid-phase enable the comprehensive assessment of sintering-microstructure-property-performance relationship of SiC ceramics,as demonstrated for their creep behaviors and fracture toughness. 展开更多
关键词 SiC ceramics coreerim structures Transition-layer Martensitic transition Creep behaviors
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部