The corn husks were usually discarded as useless materials,after alkali treatment from which the corn husk fiber was obtained. The corn husk fiber included half degumming corn husk bundle fiber and corn husk single fi...The corn husks were usually discarded as useless materials,after alkali treatment from which the corn husk fiber was obtained. The corn husk fiber included half degumming corn husk bundle fiber and corn husk single fiber. This study found that corn husk single fiber was a kind of cellulose fiber,and was obtained with the fully alkali treatment technique,the process of which was NaOH concentration 0.15 g/mL,temperature at 80℃,and reaction time about 2.5 h. The morphologies of corn husk single fibers presented nature convolutions along with the fiber axis. They were closed at both ends,and they had a pentagram cavity and oval-shaped crosssection. They were flat shape,the fineness of the fibers was close to cotton fiber,and the mechanical properties of the fibers were similar to hemp fiber. So the corn husk fibers could be predicted that they could be used in textile industry because their properties were very close to cotton fiber or flax fiber.展开更多
The use of rice husk and corn cob ashes as aggregates for foundry moulding sand has been studied. 5-12.5 weight percent of rice husk and corn cob ashes were added to the sand mixture and the sand properties determined...The use of rice husk and corn cob ashes as aggregates for foundry moulding sand has been studied. 5-12.5 weight percent of rice husk and corn cob ashes were added to the sand mixture and the sand properties determined. A mixture of equal proportion of rice husk and corn cob ashes was also used. In each case, four weight percent water and clay were added to the sand mixture. Some of the properties of the sand tested are: permeability, green compression strength, dry compression strength, green shear strength, dry shear strength, moisture content and permeability. The results showed that the green compression strength, green shear strength, moisture content and permeability decrease with increase in the additives (rice husk ash, corn cob ash, and (50% rice husk and 50% corn cob ashes). While dry compression strength and dry shear strength increase with increase in weight percent of the additives.展开更多
In our modern world, where conserving energy is highly valued, thermal insulation panels play a crucial role in reducing heat transfer between two spaces, surfaces, or materials. They are used to enhance the energy ef...In our modern world, where conserving energy is highly valued, thermal insulation panels play a crucial role in reducing heat transfer between two spaces, surfaces, or materials. They are used to enhance the energy efficiency of various industrial applications by minimizing heat loss and temperature control. These panels function as silent protectors, aiding in reducing energy consumption and making things more sustainable and better for the environment. This is where composite materials come in;they are known for their lightweight nature, high strength-to-weight ratio, and excellent thermal insulation properties and have gained significant attention. Researchers are actively engaged in various studies aimed at enhancing these materials further. This research project focuses on the development of kaolin and glass fiber-reinforced composites for thermally insulating panels, to which natural strengthening materials like corn husk and bamboo fibers are added. The aim is to create cost-effective and efficient composite materials for thermal insulation applications by incorporating these components with a binder consisting of potassium silicate, hydroxide, and distilled water. This project involves conducting compression tests, bending tests, impact tests, thermal conductivity measurements, and microscopic analysis to evaluate the mechanical and thermal properties of the developed composites. The profound impact of these engineered composites on thermal insulation panels stands to revolutionize energy conservation efforts, offering a potent avenue to minimize heat loss and enhance overall energy efficiency across an array of industrial sectors.展开更多
基金Science and Technology Project of Fujian Province,China(No.2015H0030)Fujian Provincial Universities Projects,China(No.JK2014042)
文摘The corn husks were usually discarded as useless materials,after alkali treatment from which the corn husk fiber was obtained. The corn husk fiber included half degumming corn husk bundle fiber and corn husk single fiber. This study found that corn husk single fiber was a kind of cellulose fiber,and was obtained with the fully alkali treatment technique,the process of which was NaOH concentration 0.15 g/mL,temperature at 80℃,and reaction time about 2.5 h. The morphologies of corn husk single fibers presented nature convolutions along with the fiber axis. They were closed at both ends,and they had a pentagram cavity and oval-shaped crosssection. They were flat shape,the fineness of the fibers was close to cotton fiber,and the mechanical properties of the fibers were similar to hemp fiber. So the corn husk fibers could be predicted that they could be used in textile industry because their properties were very close to cotton fiber or flax fiber.
文摘The use of rice husk and corn cob ashes as aggregates for foundry moulding sand has been studied. 5-12.5 weight percent of rice husk and corn cob ashes were added to the sand mixture and the sand properties determined. A mixture of equal proportion of rice husk and corn cob ashes was also used. In each case, four weight percent water and clay were added to the sand mixture. Some of the properties of the sand tested are: permeability, green compression strength, dry compression strength, green shear strength, dry shear strength, moisture content and permeability. The results showed that the green compression strength, green shear strength, moisture content and permeability decrease with increase in the additives (rice husk ash, corn cob ash, and (50% rice husk and 50% corn cob ashes). While dry compression strength and dry shear strength increase with increase in weight percent of the additives.
文摘In our modern world, where conserving energy is highly valued, thermal insulation panels play a crucial role in reducing heat transfer between two spaces, surfaces, or materials. They are used to enhance the energy efficiency of various industrial applications by minimizing heat loss and temperature control. These panels function as silent protectors, aiding in reducing energy consumption and making things more sustainable and better for the environment. This is where composite materials come in;they are known for their lightweight nature, high strength-to-weight ratio, and excellent thermal insulation properties and have gained significant attention. Researchers are actively engaged in various studies aimed at enhancing these materials further. This research project focuses on the development of kaolin and glass fiber-reinforced composites for thermally insulating panels, to which natural strengthening materials like corn husk and bamboo fibers are added. The aim is to create cost-effective and efficient composite materials for thermal insulation applications by incorporating these components with a binder consisting of potassium silicate, hydroxide, and distilled water. This project involves conducting compression tests, bending tests, impact tests, thermal conductivity measurements, and microscopic analysis to evaluate the mechanical and thermal properties of the developed composites. The profound impact of these engineered composites on thermal insulation panels stands to revolutionize energy conservation efforts, offering a potent avenue to minimize heat loss and enhance overall energy efficiency across an array of industrial sectors.