Unbalance existing in the mechanical systems is one of the most common causes which leads to unexpected vibration,nonsmooth motions,uncertain dynamics and even instability. In this paper,the problem of unbalance ident...Unbalance existing in the mechanical systems is one of the most common causes which leads to unexpected vibration,nonsmooth motions,uncertain dynamics and even instability. In this paper,the problem of unbalance identification and correction is investigated for the countershaft system of a precision centrifuge with two degrees of freedom. According to the characteristics of the load under test installed on the countershaft,a gradual subdivision algorithm is proposed to identify the phase of the unbalance,and its amplitude is calculated by using a space vector algorithm,where the vibration information of the mainshaft system is obtained by utilizing two axis-layout displacement transducers installed associated to the mainshaft.Based on ADAMS software,some numerical simulations are presented and compared,and further,the validity of the strategy is demonstrated by experimental examples.展开更多
There are abundant igneous gas reservoirs in the South China Sea with significant value of research,and lithology classification,mineral analysis and porosity inversion are important links in reservoir evaluation.Howe...There are abundant igneous gas reservoirs in the South China Sea with significant value of research,and lithology classification,mineral analysis and porosity inversion are important links in reservoir evaluation.However,affected by the diverse lithology,complicated mineral and widespread alteration,conventional logging lithology classification and mineral inversion become considerably difficult.At the same time,owing to the limitation of the wireline log response equation,the quantity and accuracy of minerals can hardly meet the exploration requirements of igneous formations.To overcome those issues,this study takes the South China Sea as an example,and combines multi-scale data such as micro rock slices,petrophysical experiments,wireline log and element cutting log to establish a set of joint inversion methods for minerals and porosity of altered igneous rocks.Specifically,we define the lithology and mineral characteristics through core slices and mineral data,and establish an igneous multi-mineral volumetric model.Then we determine element cutting log correction method based on core element data,and combine wireline log and corrected element cutting log to perform the lithology classification and joint inversion of minerals and porosity.However,it is always difficult to determine the elemental eigenvalues of different minerals in inversion.This paper uses multiple linear regression methods to solve this problem.Finally,an integrated inversion technique for altered igneous formations was developed.The results show that the corrected element cutting log are in good agreement with the core element data,and the mineral and porosity results obtained from the joint inversion based on the wireline log and corrected element cutting log are also in good agreement with the core data from X-ray diffraction.The results demonstrate that the inversion technique is applicable and this study provides a new direction for the mineral inversion research of altered igneous formations.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.61203191 and 61427809)the China Postdoctoral Science Foundation(Grant No.2015M571415)+1 种基金the Heilongjiang Postdoctoral Foundation(Grant No.LBH-Z14088)the Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.201626)
文摘Unbalance existing in the mechanical systems is one of the most common causes which leads to unexpected vibration,nonsmooth motions,uncertain dynamics and even instability. In this paper,the problem of unbalance identification and correction is investigated for the countershaft system of a precision centrifuge with two degrees of freedom. According to the characteristics of the load under test installed on the countershaft,a gradual subdivision algorithm is proposed to identify the phase of the unbalance,and its amplitude is calculated by using a space vector algorithm,where the vibration information of the mainshaft system is obtained by utilizing two axis-layout displacement transducers installed associated to the mainshaft.Based on ADAMS software,some numerical simulations are presented and compared,and further,the validity of the strategy is demonstrated by experimental examples.
基金The project was supported by the National Natural Science Foundation of China(Grant No.42204122).
文摘There are abundant igneous gas reservoirs in the South China Sea with significant value of research,and lithology classification,mineral analysis and porosity inversion are important links in reservoir evaluation.However,affected by the diverse lithology,complicated mineral and widespread alteration,conventional logging lithology classification and mineral inversion become considerably difficult.At the same time,owing to the limitation of the wireline log response equation,the quantity and accuracy of minerals can hardly meet the exploration requirements of igneous formations.To overcome those issues,this study takes the South China Sea as an example,and combines multi-scale data such as micro rock slices,petrophysical experiments,wireline log and element cutting log to establish a set of joint inversion methods for minerals and porosity of altered igneous rocks.Specifically,we define the lithology and mineral characteristics through core slices and mineral data,and establish an igneous multi-mineral volumetric model.Then we determine element cutting log correction method based on core element data,and combine wireline log and corrected element cutting log to perform the lithology classification and joint inversion of minerals and porosity.However,it is always difficult to determine the elemental eigenvalues of different minerals in inversion.This paper uses multiple linear regression methods to solve this problem.Finally,an integrated inversion technique for altered igneous formations was developed.The results show that the corrected element cutting log are in good agreement with the core element data,and the mineral and porosity results obtained from the joint inversion based on the wireline log and corrected element cutting log are also in good agreement with the core data from X-ray diffraction.The results demonstrate that the inversion technique is applicable and this study provides a new direction for the mineral inversion research of altered igneous formations.