Low Earth Orbit(LEO)multibeam satellites will be widely used in the next generation of satellite communication systems,whose inter-beam interference will inevitably limit the performance of the whole system.Nonlinear ...Low Earth Orbit(LEO)multibeam satellites will be widely used in the next generation of satellite communication systems,whose inter-beam interference will inevitably limit the performance of the whole system.Nonlinear precoding such as Tomlinson-Harashima precoding(THP)algorithm has been proved to be a promising technology to solve this problem,which has smaller noise amplification effect compared with linear precoding.However,the similarity of different user channels(defined as channel correlation)will degrade the performance of THP algorithm.In this paper,we qualitatively analyze the inter-beam interference in the whole process of LEO satellite over a specific coverage area,and the impact of channel correlation on Signal-to-Noise Ratio(SNR)of receivers when THP is applied.One user grouping algorithm is proposed based on the analysis of channel correlation,which could decrease the number of users with high channel correlation in each precoding group,thus improve the performance of THP.Furthermore,our algorithm is designed under the premise of co-frequency deployment and orthogonal frequency division multiplexing(OFDM),which leads to more users under severe inter-beam interference compared to the existing research on geostationary orbit satellites broadcasting systems.Simulation results show that the proposed user grouping algorithm possesses higher channel capacity and better bit error rate(BER)performance in high SNR conditions relative to existing works.展开更多
With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in th...With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in the field of human reliability analysis(HRA)to evaluate human reliability and assess risk in large complex systems.However,the classical SPAR-H method does not consider the dependencies among performance shaping factors(PSFs),whichmay cause overestimation or underestimation of the risk of the actual situation.To address this issue,this paper proposes a new method to deal with the dependencies among PSFs in SPAR-H based on the Pearson correlation coefficient.First,the dependence between every two PSFs is measured by the Pearson correlation coefficient.Second,the weights of the PSFs are obtained by considering the total dependence degree.Finally,PSFs’multipliers are modified based on the weights of corresponding PSFs,and then used in the calculating of human error probability(HEP).A case study is used to illustrate the procedure and effectiveness of the proposed method.展开更多
Leakages from subsea oil and gas equipment cause substantial economic losses and damage to marine ecosystem,so it is essential to locate the source of the leak.However,due to the complexity and variability of the mari...Leakages from subsea oil and gas equipment cause substantial economic losses and damage to marine ecosystem,so it is essential to locate the source of the leak.However,due to the complexity and variability of the marine environment,the signals collected by hydrophone contain a variety of noises,which makes it challenging to extract useful signals for localization.To solve this problem,a hydrophone denoising algorithm is proposed based on variational modal decomposition(VMD)with grey wolf optimization.First,the average envelope entropy is used as the fitness function of the grey wolf optimizer to find the optimal solution for the parameters K andα.Afterward,the VMD algorithm decomposes the original signal parameters to obtain the intrinsic mode functions(IMFs).Subsequently,the number of interrelationships between each IMF and the original signal was calculated,the threshold value was set,and the noise signal was removed to calculate the time difference using the valid signal obtained by reconstruction.Finally,the arrival time difference is used to locate the origin of the leak.The localization accuracy of the method in finding leaks is investigated experimentally by constructing a simulated leak test rig,and the effectiveness and feasibility of the method are verified.展开更多
In this paper,we propose a finite volume Hermite weighted essentially non-oscillatory(HWENO)method based on the dimension by dimension framework to solve hyperbolic conservation laws.It can maintain the high accuracy ...In this paper,we propose a finite volume Hermite weighted essentially non-oscillatory(HWENO)method based on the dimension by dimension framework to solve hyperbolic conservation laws.It can maintain the high accuracy in the smooth region and obtain the high resolution solution when the discontinuity appears,and it is compact which will be good for giving the numerical boundary conditions.Furthermore,it avoids complicated least square procedure when we implement the genuine two dimensional(2D)finite volume HWENO reconstruction,and it can be regarded as a generalization of the one dimensional(1D)HWENO method.Extensive numerical tests are performed to verify the high resolution and high accuracy of the scheme.展开更多
Dear Editor,This letter puts forward a novel scalable temporal dimension preserved tensor completion model based on orthogonal initialization for missing traffic data(MTD)imputation.The MTD imputation acts directly on...Dear Editor,This letter puts forward a novel scalable temporal dimension preserved tensor completion model based on orthogonal initialization for missing traffic data(MTD)imputation.The MTD imputation acts directly on accessing the traffic state,and affects the traffic management.展开更多
The idea of a human community with a shared future was proposed by the Communist Party of China(CPC)Central Committee with Comrade Xi Jinping at its core for the future development of human beings to face up to the mo...The idea of a human community with a shared future was proposed by the Communist Party of China(CPC)Central Committee with Comrade Xi Jinping at its core for the future development of human beings to face up to the most important question in today's world:“What is happening to the world and what should we do?”It profoundly answers the question of the world,history,and the times.The theory of a human community with a shared future is an innovative theory with a multidimensional formation logic that guides humanity toward continually seeking common interests and values.This paper dives into the profound motivations behind building a human community with a shared future from historical,cultural,and practical dimensions and analyzes its epochal value from both domestic and international perspectives.This not only helps exert China's role in the international community,contributing Chinese strength to the construction of a peaceful,stable,and prosperous human society,but also enhances the influence of the idea of a human community with a shared future in the international community,accelerating the building of a human community with a shared future that considers the legitimate concerns of all countries,and aiding in solving the crises facing the world.展开更多
Flaxseed lignan macromolecules(FLM)are a class of important secondary metabolites in fl axseed,which have been widely concerned due to their biological and pharmacological properties,especially for their antioxidative...Flaxseed lignan macromolecules(FLM)are a class of important secondary metabolites in fl axseed,which have been widely concerned due to their biological and pharmacological properties,especially for their antioxidative activity.For the composition and structure of FLM,our results confirmed that ferulic acid glycoside(FerAG)was directly ester-linked with herbacetin diglucoside(HDG)or pinoresinol diglucoside(PDG),which might determine the beginning of FLM biosynthesis.Additionally,p-coumaric acid glycoside(CouAG)might determine the end of chain extension during FLM synthesis in fl axseed.FLM exhibited higher antioxidative activity in polar systems,as shown by its superior 1,1-diphenyl-2-picrylhydrazyl(DPPH)free radical scavenging capacity compared to the 2,2’-azinobis(3-ehtylbenzothiazolin-6-sulfnic acid)(ABTS)cation free radical scavenging capacity in non-polar systems.Moreover,the antioxidative activity of FLM was found to be highly dependent on its composition and structure.In particular,it was positively correlated with the number of phenolic hydroxyl groups(longer FLM chains)and inversely related to the steric hindrance at the ends(lower levels of FerAG and CouAG).These fi ndings verifi ed the potential application of FLM in nonpolar systems,particularly in functional food emulsions。展开更多
Fusing hand-based features in multi-modal biometric recognition enhances anti-spoofing capabilities.Additionally,it leverages inter-modal correlation to enhance recognition performance.Concurrently,the robustness and ...Fusing hand-based features in multi-modal biometric recognition enhances anti-spoofing capabilities.Additionally,it leverages inter-modal correlation to enhance recognition performance.Concurrently,the robustness and recognition performance of the system can be enhanced through judiciously leveraging the correlation among multimodal features.Nevertheless,two issues persist in multi-modal feature fusion recognition:Firstly,the enhancement of recognition performance in fusion recognition has not comprehensively considered the inter-modality correlations among distinct modalities.Secondly,during modal fusion,improper weight selection diminishes the salience of crucial modal features,thereby diminishing the overall recognition performance.To address these two issues,we introduce an enhanced DenseNet multimodal recognition network founded on feature-level fusion.The information from the three modalities is fused akin to RGB,and the input network augments the correlation between modes through channel correlation.Within the enhanced DenseNet network,the Efficient Channel Attention Network(ECA-Net)dynamically adjusts the weight of each channel to amplify the salience of crucial information in each modal feature.Depthwise separable convolution markedly reduces the training parameters and further enhances the feature correlation.Experimental evaluations were conducted on four multimodal databases,comprising six unimodal databases,including multispectral palmprint and palm vein databases from the Chinese Academy of Sciences.The Equal Error Rates(EER)values were 0.0149%,0.0150%,0.0099%,and 0.0050%,correspondingly.In comparison to other network methods for palmprint,palm vein,and finger vein fusion recognition,this approach substantially enhances recognition performance,rendering it suitable for high-security environments with practical applicability.The experiments in this article utilized amodest sample database comprising 200 individuals.The subsequent phase involves preparing for the extension of the method to larger databases.展开更多
In nuclear collisions at RHIC energies, an excess of Ω hyperons over ■ is observed, indicating that Ω has a net baryon number despite s and s quarks being produced in pairs. The baryon number in Ω may have been tr...In nuclear collisions at RHIC energies, an excess of Ω hyperons over ■ is observed, indicating that Ω has a net baryon number despite s and s quarks being produced in pairs. The baryon number in Ω may have been transported from the incident nuclei and/or produced in the baryon-pair production of Ω with other types of anti-hyperons such as Ξ. To investigate these two scenarios, we propose to measure the correlations between Ω and K and between Ω and anti-hyperons. We use two versions, the default and string-melting, of a multiphase transport(AMPT) model to illustrate the method for measuring the correlation and to demonstrate the general shape of the correlation. We present the Ω-hadron correlations from simulated Au+Au collisions at ■ =7.7 and 14.6 Ge V and discuss the dependence on the collision energy and on the hadronization scheme in these two AMPT versions. These correlations can be used to explore the mechanism of baryon number transport and the effects of baryon number and strangeness conservation on nuclear collisions.展开更多
The rapid development of unmanned aerial vehicle(UAV) swarm, a new type of aerial threat target, has brought great pressure to the air defense early warning system. At present, most of the track correlation algorithms...The rapid development of unmanned aerial vehicle(UAV) swarm, a new type of aerial threat target, has brought great pressure to the air defense early warning system. At present, most of the track correlation algorithms only use part of the target location, speed, and other information for correlation.In this paper, the artificial neural network method is used to establish the corresponding intelligent track correlation model and method according to the characteristics of swarm targets.Precisely, a route correlation method based on convolutional neural networks (CNN) and long short-term memory (LSTM)Neural network is designed. In this model, the CNN is used to extract the formation characteristics of UAV swarm and the spatial position characteristics of single UAV track in the formation,while the LSTM is used to extract the time characteristics of UAV swarm. Experimental results show that compared with the traditional algorithms, the algorithm based on CNN-LSTM neural network can make full use of multiple feature information of the target, and has better robustness and accuracy for swarm targets.展开更多
The Indo-Gangetic Plain(IGP)is one of the most seismically vulnerable areas due to its proximity to the Himalayas.Geographic information system(GIS)-based seismic characterization of the IGP was performed based on the...The Indo-Gangetic Plain(IGP)is one of the most seismically vulnerable areas due to its proximity to the Himalayas.Geographic information system(GIS)-based seismic characterization of the IGP was performed based on the degree of deformation and fractal dimension.The zone between the Main Boundary Thrust(MBT)and the Main Central Thrust(MCT)in the Himalayan Mountain Range(HMR)experienced large variations in earthquake magnitude,which were identified by Number-Size(NS)fractal modeling.The central IGP zone experienced only moderate to low mainshock levels.Fractal analysis of earthquake epicenters reveals a large scattering of earthquake epicenters in the HMR and central IGP zones.Similarly,the fault fractal analysis identifies the HMR,central IGP,and south-western IGP zones as having more faults.Overall,the seismicity of the study region is strong in the central IGP,south-western IGP,and HMR zones,moderate in the western and southern IGP,and low in the northern,eastern,and south-eastern IGP zones.展开更多
News media profiling is helpful in preventing the spread of fake news at the source and maintaining a good media and news ecosystem.Most previous works only extract features and evaluate media from one dimension indep...News media profiling is helpful in preventing the spread of fake news at the source and maintaining a good media and news ecosystem.Most previous works only extract features and evaluate media from one dimension independently,ignoring the interconnections between different aspects.This paper proposes a novel news media bias and factuality profiling framework assisted by correlated features.This framework models the relationship and interaction between media bias and factuality,utilizing this relationship to assist in the prediction of profiling results.Our approach extracts features independently while aligning and fusing them through recursive convolu-tion and attention mechanisms,thus harnessing multi-scale interactive information across different dimensions and levels.This method improves the effectiveness of news media evaluation.Experimental results indicate that our proposed framework significantly outperforms existing methods,achieving the best performance in Accuracy and F1 score,improving by at least 1%compared to other methods.This paper further analyzes and discusses based on the experimental results.展开更多
The kagome lattice system has been identified as a fertile ground for the emergence of a number of new quantumstates,including superconductivity,quantum spin liquids,and topological electronic states.This has attracte...The kagome lattice system has been identified as a fertile ground for the emergence of a number of new quantumstates,including superconductivity,quantum spin liquids,and topological electronic states.This has attracted significantinterest within the field of condensed matter physics.Here,we present the observation of an anomalous Hall effect in aniron-based kagome antiferromagnet LuFe_(6)Sn_(6),which implies a non-zero Berry curvature in this compound.By means ofextensive magnetic measurements,a high Neel temperature,T_(N)=552 K,and a spin reorientation behavior were identifiedand a simple temperature-field phase diagram was constructed.Furthermore,this compound was found to exhibit a largeSommerfeld coefficient ofγ=87 mJ·mol^(-1)·K^(-2),suggesting the presence of a strong electronic correlation effect.Ourresearch indicates that LuFe_(6)Sn_(6)is an intriguing compound that may exhibit magnetism,strong correlation,and topologicalstates.展开更多
The behavior of the quantum correlations, information scrambling and the non-Markovianity of three entangling qubits systems via Rashba is discussed. The results showed that, the three physical quantities oscillate be...The behavior of the quantum correlations, information scrambling and the non-Markovianity of three entangling qubits systems via Rashba is discussed. The results showed that, the three physical quantities oscillate between their upper and lower bounds, where the number of oscillations increases as the Rashba interaction strength increases. The exchanging rate of these three quantities depends on the Rashba strength, and whether the entangled state is generated via direct/indirect interaction. Moreover, the coherence parameter can be used as a control parameter to maximize or minimize the three physical quantities.展开更多
We propose a novel framework for learning a low-dimensional representation of data based on nonlinear dynamical systems,which we call the dynamical dimension reduction(DDR).In the DDR model,each point is evolved via a...We propose a novel framework for learning a low-dimensional representation of data based on nonlinear dynamical systems,which we call the dynamical dimension reduction(DDR).In the DDR model,each point is evolved via a nonlinear flow towards a lower-dimensional subspace;the projection onto the subspace gives the low-dimensional embedding.Training the model involves identifying the nonlinear flow and the subspace.Following the equation discovery method,we represent the vector field that defines the flow using a linear combination of dictionary elements,where each element is a pre-specified linear/nonlinear candidate function.A regularization term for the average total kinetic energy is also introduced and motivated by the optimal transport theory.We prove that the resulting optimization problem is well-posed and establish several properties of the DDR method.We also show how the DDR method can be trained using a gradient-based optimization method,where the gradients are computed using the adjoint method from the optimal control theory.The DDR method is implemented and compared on synthetic and example data sets to other dimension reduction methods,including the PCA,t-SNE,and Umap.展开更多
Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to ...Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to pipeline-riser flow needs evaluation since the flow condition in pipeline-riser is quite different from the original data where they were derived from. In the present study, a comprehensive evaluation of 24prevailing correlation in predicting frictional pressure drop is carried out based on experimentally measured data of air-water and air-oil two-phase flows in pipeline-riser. Experiments are performed in a system having different configuration of pipeline-riser with the inclination of the downcomer varied from-2°to-5°to investigated the effect of the elbow on the frictional pressure drop in the riser. The inlet gas velocity ranges from 0.03 to 6.2 m/s, and liquid velocity varies from 0.02 to 1.3 m/s. A total of885 experimental data points including 782 on air-water flows and 103 on air-oil flows are obtained and used to access the prediction ability of the correlations. Comparison of the predicted results with the measured data indicate that a majority of the investigated correlations under-predict the pressure drop on severe slugging. The result of this study highlights the requirement of new method considering the effect of pipe layout on the frictional pressure drop.展开更多
The comprehension of sediment grain size parameters and the corresponding sedimentary environment holds paramount importance in elucidating the engineering geological attributes of the subaqueous seabed.This study del...The comprehension of sediment grain size parameters and the corresponding sedimentary environment holds paramount importance in elucidating the engineering geological attributes of the subaqueous seabed.This study delineated the sedimentary environment zoning in the northern sea area of Qingdao through cluster analysis of grain size parameters derived from 123 surface sediment samples.The study analyzed the correlation between sediment geotechnical indices and grain size parameters across diverse sedimentary environments.A correlation equation was established for samples exhibiting a strong correlation.The study found four distinct sedimentary environments in the study area:coastal,transitional,shallow sea,and residual.Within the same sedimentary environment,the average grain size and sorting coefficient exhibit significant correlations with geotechnical indices such as water content,density,shear strength,plastic limit,liquid limit,and plastic index.However,notable disparities in the correlation between grain size parameters and geotechnical indices emerge across different sedimentary environments.展开更多
Leveraging the extraordinary phenomena of quantum superposition and quantum correlation,quantum computing offers unprecedented potential for addressing challenges beyond the reach of classical computers.This paper tac...Leveraging the extraordinary phenomena of quantum superposition and quantum correlation,quantum computing offers unprecedented potential for addressing challenges beyond the reach of classical computers.This paper tackles two pivotal challenges in the realm of quantum computing:firstly,the development of an effective encoding protocol for translating classical data into quantum states,a critical step for any quantum computation.Different encoding strategies can significantly influence quantum computer performance.Secondly,we address the need to counteract the inevitable noise that can hinder quantum acceleration.Our primary contribution is the introduction of a novel variational data encoding method,grounded in quantum regression algorithm models.By adapting the learning concept from machine learning,we render data encoding a learnable process.This allowed us to study the role of quantum correlation in data encoding.Through numerical simulations of various regression tasks,we demonstrate the efficacy of our variational data encoding,particularly post-learning from instructional data.Moreover,we delve into the role of quantum correlation in enhancing task performance,especially in noisy environments.Our findings underscore the critical role of quantum correlation in not only bolstering performance but also in mitigating noise interference,thus advancing the frontier of quantum computing.展开更多
Correlation power analysis(CPA)combined with genetic algorithms(GA)now achieves greater attack efficiency and can recover all subkeys simultaneously.However,two issues in GA-based CPA still need to be addressed:key de...Correlation power analysis(CPA)combined with genetic algorithms(GA)now achieves greater attack efficiency and can recover all subkeys simultaneously.However,two issues in GA-based CPA still need to be addressed:key degeneration and slow evolution within populations.These challenges significantly hinder key recovery efforts.This paper proposes a screening correlation power analysis framework combined with a genetic algorithm,named SFGA-CPA,to address these issues.SFGA-CPA introduces three operations designed to exploit CPA characteris-tics:propagative operation,constrained crossover,and constrained mutation.Firstly,the propagative operation accelerates population evolution by maximizing the number of correct bytes in each individual.Secondly,the constrained crossover and mutation operations effectively address key degeneration by preventing the compromise of correct bytes.Finally,an intelligent search method is proposed to identify optimal parameters,further improving attack efficiency.Experiments were conducted on both simulated environments and real power traces collected from the SAKURA-G platform.In the case of simulation,SFGA-CPA reduces the number of traces by 27.3%and 60%compared to CPA based on multiple screening methods(MS-CPA)and CPA based on simple GA method(SGA-CPA)when the success rate reaches 90%.Moreover,real experimental results on the SAKURA-G platform demonstrate that our approach outperforms other methods.展开更多
Nutrients in human milk,including minerals,relate growth and development of breast-fed infants.Tibetan mother-infant dyads possess unique characteristics on early nutrition due to their featured long-lasting lifestyle...Nutrients in human milk,including minerals,relate growth and development of breast-fed infants.Tibetan mother-infant dyads possess unique characteristics on early nutrition due to their featured long-lasting lifestyle.This study longitudinally investigated the relationship between the mineral composition in human milk and the Z-scores of infants among Tibetan mother-infant dyads during their first 6 months postpartum through a prospective cohort study.The results show that the minerals of Na,Mg,K,Ca,Cu,Zn,and Se were of higher levels in colostrum than other lactation stages.Several minerals were below the recommended values for infants according to Chinese dietary guidelines.Besides,a large proportion of infant Z-scores were below-2 as lactation period continued.Multivariate statistical analysis revealed that classifications and correlations in varying degrees were observed between minerals in human milk and infant Z-scores.These findings will be advantageous for research upon Chinese early nutrition and progress of tailor-made infant formula.展开更多
基金supported by the Key R&D Project of the Ministry of Science and Technology of China(2020YFB1808005)。
文摘Low Earth Orbit(LEO)multibeam satellites will be widely used in the next generation of satellite communication systems,whose inter-beam interference will inevitably limit the performance of the whole system.Nonlinear precoding such as Tomlinson-Harashima precoding(THP)algorithm has been proved to be a promising technology to solve this problem,which has smaller noise amplification effect compared with linear precoding.However,the similarity of different user channels(defined as channel correlation)will degrade the performance of THP algorithm.In this paper,we qualitatively analyze the inter-beam interference in the whole process of LEO satellite over a specific coverage area,and the impact of channel correlation on Signal-to-Noise Ratio(SNR)of receivers when THP is applied.One user grouping algorithm is proposed based on the analysis of channel correlation,which could decrease the number of users with high channel correlation in each precoding group,thus improve the performance of THP.Furthermore,our algorithm is designed under the premise of co-frequency deployment and orthogonal frequency division multiplexing(OFDM),which leads to more users under severe inter-beam interference compared to the existing research on geostationary orbit satellites broadcasting systems.Simulation results show that the proposed user grouping algorithm possesses higher channel capacity and better bit error rate(BER)performance in high SNR conditions relative to existing works.
基金Shanghai Rising-Star Program(Grant No.21QA1403400)Shanghai Sailing Program(Grant No.20YF1414800)Shanghai Key Laboratory of Power Station Automation Technology(Grant No.13DZ2273800).
文摘With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in the field of human reliability analysis(HRA)to evaluate human reliability and assess risk in large complex systems.However,the classical SPAR-H method does not consider the dependencies among performance shaping factors(PSFs),whichmay cause overestimation or underestimation of the risk of the actual situation.To address this issue,this paper proposes a new method to deal with the dependencies among PSFs in SPAR-H based on the Pearson correlation coefficient.First,the dependence between every two PSFs is measured by the Pearson correlation coefficient.Second,the weights of the PSFs are obtained by considering the total dependence degree.Finally,PSFs’multipliers are modified based on the weights of corresponding PSFs,and then used in the calculating of human error probability(HEP).A case study is used to illustrate the procedure and effectiveness of the proposed method.
基金financially supported by the National Key Research and Development Program of China(Grant No.2022YFC2806102)the National Natural Science Foundation of China(Grant Nos.52171287,52325107)+2 种基金High Tech Ship Research Project of Ministry of Industry and Information Technology(Grant Nos.2023GXB01-05-004-03,GXBZH2022-293)the Science Foundation for Distinguished Young Scholars of Shandong Province(Grant No.ZR2022JQ25)the Taishan Scholars Project(Grant No.tsqn201909063)。
文摘Leakages from subsea oil and gas equipment cause substantial economic losses and damage to marine ecosystem,so it is essential to locate the source of the leak.However,due to the complexity and variability of the marine environment,the signals collected by hydrophone contain a variety of noises,which makes it challenging to extract useful signals for localization.To solve this problem,a hydrophone denoising algorithm is proposed based on variational modal decomposition(VMD)with grey wolf optimization.First,the average envelope entropy is used as the fitness function of the grey wolf optimizer to find the optimal solution for the parameters K andα.Afterward,the VMD algorithm decomposes the original signal parameters to obtain the intrinsic mode functions(IMFs).Subsequently,the number of interrelationships between each IMF and the original signal was calculated,the threshold value was set,and the noise signal was removed to calculate the time difference using the valid signal obtained by reconstruction.Finally,the arrival time difference is used to locate the origin of the leak.The localization accuracy of the method in finding leaks is investigated experimentally by constructing a simulated leak test rig,and the effectiveness and feasibility of the method are verified.
基金supported by the NSFC grant 12101128supported by the NSFC grant 12071392.
文摘In this paper,we propose a finite volume Hermite weighted essentially non-oscillatory(HWENO)method based on the dimension by dimension framework to solve hyperbolic conservation laws.It can maintain the high accuracy in the smooth region and obtain the high resolution solution when the discontinuity appears,and it is compact which will be good for giving the numerical boundary conditions.Furthermore,it avoids complicated least square procedure when we implement the genuine two dimensional(2D)finite volume HWENO reconstruction,and it can be regarded as a generalization of the one dimensional(1D)HWENO method.Extensive numerical tests are performed to verify the high resolution and high accuracy of the scheme.
基金supported by the Young Top Talent of Young Eagle Program of Fujian Province,China(F21E 0011202B01).
文摘Dear Editor,This letter puts forward a novel scalable temporal dimension preserved tensor completion model based on orthogonal initialization for missing traffic data(MTD)imputation.The MTD imputation acts directly on accessing the traffic state,and affects the traffic management.
文摘The idea of a human community with a shared future was proposed by the Communist Party of China(CPC)Central Committee with Comrade Xi Jinping at its core for the future development of human beings to face up to the most important question in today's world:“What is happening to the world and what should we do?”It profoundly answers the question of the world,history,and the times.The theory of a human community with a shared future is an innovative theory with a multidimensional formation logic that guides humanity toward continually seeking common interests and values.This paper dives into the profound motivations behind building a human community with a shared future from historical,cultural,and practical dimensions and analyzes its epochal value from both domestic and international perspectives.This not only helps exert China's role in the international community,contributing Chinese strength to the construction of a peaceful,stable,and prosperous human society,but also enhances the influence of the idea of a human community with a shared future in the international community,accelerating the building of a human community with a shared future that considers the legitimate concerns of all countries,and aiding in solving the crises facing the world.
基金support from National Natural Science Foundation of China(32072267)supported by China Agriculture Research System of CRAS-14.
文摘Flaxseed lignan macromolecules(FLM)are a class of important secondary metabolites in fl axseed,which have been widely concerned due to their biological and pharmacological properties,especially for their antioxidative activity.For the composition and structure of FLM,our results confirmed that ferulic acid glycoside(FerAG)was directly ester-linked with herbacetin diglucoside(HDG)or pinoresinol diglucoside(PDG),which might determine the beginning of FLM biosynthesis.Additionally,p-coumaric acid glycoside(CouAG)might determine the end of chain extension during FLM synthesis in fl axseed.FLM exhibited higher antioxidative activity in polar systems,as shown by its superior 1,1-diphenyl-2-picrylhydrazyl(DPPH)free radical scavenging capacity compared to the 2,2’-azinobis(3-ehtylbenzothiazolin-6-sulfnic acid)(ABTS)cation free radical scavenging capacity in non-polar systems.Moreover,the antioxidative activity of FLM was found to be highly dependent on its composition and structure.In particular,it was positively correlated with the number of phenolic hydroxyl groups(longer FLM chains)and inversely related to the steric hindrance at the ends(lower levels of FerAG and CouAG).These fi ndings verifi ed the potential application of FLM in nonpolar systems,particularly in functional food emulsions。
基金funded by the National Natural Science Foundation of China(61991413)the China Postdoctoral Science Foundation(2019M651142)+1 种基金the Natural Science Foundation of Liaoning Province(2021-KF-12-07)the Natural Science Foundations of Liaoning Province(2023-MS-322).
文摘Fusing hand-based features in multi-modal biometric recognition enhances anti-spoofing capabilities.Additionally,it leverages inter-modal correlation to enhance recognition performance.Concurrently,the robustness and recognition performance of the system can be enhanced through judiciously leveraging the correlation among multimodal features.Nevertheless,two issues persist in multi-modal feature fusion recognition:Firstly,the enhancement of recognition performance in fusion recognition has not comprehensively considered the inter-modality correlations among distinct modalities.Secondly,during modal fusion,improper weight selection diminishes the salience of crucial modal features,thereby diminishing the overall recognition performance.To address these two issues,we introduce an enhanced DenseNet multimodal recognition network founded on feature-level fusion.The information from the three modalities is fused akin to RGB,and the input network augments the correlation between modes through channel correlation.Within the enhanced DenseNet network,the Efficient Channel Attention Network(ECA-Net)dynamically adjusts the weight of each channel to amplify the salience of crucial information in each modal feature.Depthwise separable convolution markedly reduces the training parameters and further enhances the feature correlation.Experimental evaluations were conducted on four multimodal databases,comprising six unimodal databases,including multispectral palmprint and palm vein databases from the Chinese Academy of Sciences.The Equal Error Rates(EER)values were 0.0149%,0.0150%,0.0099%,and 0.0050%,correspondingly.In comparison to other network methods for palmprint,palm vein,and finger vein fusion recognition,this approach substantially enhances recognition performance,rendering it suitable for high-security environments with practical applicability.The experiments in this article utilized amodest sample database comprising 200 individuals.The subsequent phase involves preparing for the extension of the method to larger databases.
文摘In nuclear collisions at RHIC energies, an excess of Ω hyperons over ■ is observed, indicating that Ω has a net baryon number despite s and s quarks being produced in pairs. The baryon number in Ω may have been transported from the incident nuclei and/or produced in the baryon-pair production of Ω with other types of anti-hyperons such as Ξ. To investigate these two scenarios, we propose to measure the correlations between Ω and K and between Ω and anti-hyperons. We use two versions, the default and string-melting, of a multiphase transport(AMPT) model to illustrate the method for measuring the correlation and to demonstrate the general shape of the correlation. We present the Ω-hadron correlations from simulated Au+Au collisions at ■ =7.7 and 14.6 Ge V and discuss the dependence on the collision energy and on the hadronization scheme in these two AMPT versions. These correlations can be used to explore the mechanism of baryon number transport and the effects of baryon number and strangeness conservation on nuclear collisions.
文摘The rapid development of unmanned aerial vehicle(UAV) swarm, a new type of aerial threat target, has brought great pressure to the air defense early warning system. At present, most of the track correlation algorithms only use part of the target location, speed, and other information for correlation.In this paper, the artificial neural network method is used to establish the corresponding intelligent track correlation model and method according to the characteristics of swarm targets.Precisely, a route correlation method based on convolutional neural networks (CNN) and long short-term memory (LSTM)Neural network is designed. In this model, the CNN is used to extract the formation characteristics of UAV swarm and the spatial position characteristics of single UAV track in the formation,while the LSTM is used to extract the time characteristics of UAV swarm. Experimental results show that compared with the traditional algorithms, the algorithm based on CNN-LSTM neural network can make full use of multiple feature information of the target, and has better robustness and accuracy for swarm targets.
文摘The Indo-Gangetic Plain(IGP)is one of the most seismically vulnerable areas due to its proximity to the Himalayas.Geographic information system(GIS)-based seismic characterization of the IGP was performed based on the degree of deformation and fractal dimension.The zone between the Main Boundary Thrust(MBT)and the Main Central Thrust(MCT)in the Himalayan Mountain Range(HMR)experienced large variations in earthquake magnitude,which were identified by Number-Size(NS)fractal modeling.The central IGP zone experienced only moderate to low mainshock levels.Fractal analysis of earthquake epicenters reveals a large scattering of earthquake epicenters in the HMR and central IGP zones.Similarly,the fault fractal analysis identifies the HMR,central IGP,and south-western IGP zones as having more faults.Overall,the seismicity of the study region is strong in the central IGP,south-western IGP,and HMR zones,moderate in the western and southern IGP,and low in the northern,eastern,and south-eastern IGP zones.
基金funded by“the Fundamental Research Funds for the Central Universities”,No.CUC23ZDTJ005.
文摘News media profiling is helpful in preventing the spread of fake news at the source and maintaining a good media and news ecosystem.Most previous works only extract features and evaluate media from one dimension independently,ignoring the interconnections between different aspects.This paper proposes a novel news media bias and factuality profiling framework assisted by correlated features.This framework models the relationship and interaction between media bias and factuality,utilizing this relationship to assist in the prediction of profiling results.Our approach extracts features independently while aligning and fusing them through recursive convolu-tion and attention mechanisms,thus harnessing multi-scale interactive information across different dimensions and levels.This method improves the effectiveness of news media evaluation.Experimental results indicate that our proposed framework significantly outperforms existing methods,achieving the best performance in Accuracy and F1 score,improving by at least 1%compared to other methods.This paper further analyzes and discusses based on the experimental results.
基金supported by the National Key Research and Development Program of China(Grant Nos.2022YFA1403400,2019YFA0704900,and 2022YFA1403800)the Fundamental Science Center of the National Natural Science Foundation of China(Grant No.52088101)+4 种基金the National Natural Science Foundation of China(Grant Nos.11974394 and 12174426)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(CAS)(Grant No.XDB33000000)the CAS Project for Young Scientists in Basic Research(Grant No.YSBR-057)the Synergetic Extreme Condition User Facility(Grant No.SECUF)the Scientific Instrument Developing Project of CAS(Grant No.ZDKYYQ20210003).
文摘The kagome lattice system has been identified as a fertile ground for the emergence of a number of new quantumstates,including superconductivity,quantum spin liquids,and topological electronic states.This has attracted significantinterest within the field of condensed matter physics.Here,we present the observation of an anomalous Hall effect in aniron-based kagome antiferromagnet LuFe_(6)Sn_(6),which implies a non-zero Berry curvature in this compound.By means ofextensive magnetic measurements,a high Neel temperature,T_(N)=552 K,and a spin reorientation behavior were identifiedand a simple temperature-field phase diagram was constructed.Furthermore,this compound was found to exhibit a largeSommerfeld coefficient ofγ=87 mJ·mol^(-1)·K^(-2),suggesting the presence of a strong electronic correlation effect.Ourresearch indicates that LuFe_(6)Sn_(6)is an intriguing compound that may exhibit magnetism,strong correlation,and topologicalstates.
文摘The behavior of the quantum correlations, information scrambling and the non-Markovianity of three entangling qubits systems via Rashba is discussed. The results showed that, the three physical quantities oscillate between their upper and lower bounds, where the number of oscillations increases as the Rashba interaction strength increases. The exchanging rate of these three quantities depends on the Rashba strength, and whether the entangled state is generated via direct/indirect interaction. Moreover, the coherence parameter can be used as a control parameter to maximize or minimize the three physical quantities.
文摘We propose a novel framework for learning a low-dimensional representation of data based on nonlinear dynamical systems,which we call the dynamical dimension reduction(DDR).In the DDR model,each point is evolved via a nonlinear flow towards a lower-dimensional subspace;the projection onto the subspace gives the low-dimensional embedding.Training the model involves identifying the nonlinear flow and the subspace.Following the equation discovery method,we represent the vector field that defines the flow using a linear combination of dictionary elements,where each element is a pre-specified linear/nonlinear candidate function.A regularization term for the average total kinetic energy is also introduced and motivated by the optimal transport theory.We prove that the resulting optimization problem is well-posed and establish several properties of the DDR method.We also show how the DDR method can be trained using a gradient-based optimization method,where the gradients are computed using the adjoint method from the optimal control theory.The DDR method is implemented and compared on synthetic and example data sets to other dimension reduction methods,including the PCA,t-SNE,and Umap.
基金the support of the Opening Fund of State Key Laboratory of Multiphase Flow in Power Engineering(SKLMF-KF-2102)。
文摘Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to pipeline-riser flow needs evaluation since the flow condition in pipeline-riser is quite different from the original data where they were derived from. In the present study, a comprehensive evaluation of 24prevailing correlation in predicting frictional pressure drop is carried out based on experimentally measured data of air-water and air-oil two-phase flows in pipeline-riser. Experiments are performed in a system having different configuration of pipeline-riser with the inclination of the downcomer varied from-2°to-5°to investigated the effect of the elbow on the frictional pressure drop in the riser. The inlet gas velocity ranges from 0.03 to 6.2 m/s, and liquid velocity varies from 0.02 to 1.3 m/s. A total of885 experimental data points including 782 on air-water flows and 103 on air-oil flows are obtained and used to access the prediction ability of the correlations. Comparison of the predicted results with the measured data indicate that a majority of the investigated correlations under-predict the pressure drop on severe slugging. The result of this study highlights the requirement of new method considering the effect of pipe layout on the frictional pressure drop.
基金funded by the National Key R&D Program Project(No.2022YFC3103604).
文摘The comprehension of sediment grain size parameters and the corresponding sedimentary environment holds paramount importance in elucidating the engineering geological attributes of the subaqueous seabed.This study delineated the sedimentary environment zoning in the northern sea area of Qingdao through cluster analysis of grain size parameters derived from 123 surface sediment samples.The study analyzed the correlation between sediment geotechnical indices and grain size parameters across diverse sedimentary environments.A correlation equation was established for samples exhibiting a strong correlation.The study found four distinct sedimentary environments in the study area:coastal,transitional,shallow sea,and residual.Within the same sedimentary environment,the average grain size and sorting coefficient exhibit significant correlations with geotechnical indices such as water content,density,shear strength,plastic limit,liquid limit,and plastic index.However,notable disparities in the correlation between grain size parameters and geotechnical indices emerge across different sedimentary environments.
基金the National Natural Science Foun-dation of China(Grant Nos.12105090 and 12175057).
文摘Leveraging the extraordinary phenomena of quantum superposition and quantum correlation,quantum computing offers unprecedented potential for addressing challenges beyond the reach of classical computers.This paper tackles two pivotal challenges in the realm of quantum computing:firstly,the development of an effective encoding protocol for translating classical data into quantum states,a critical step for any quantum computation.Different encoding strategies can significantly influence quantum computer performance.Secondly,we address the need to counteract the inevitable noise that can hinder quantum acceleration.Our primary contribution is the introduction of a novel variational data encoding method,grounded in quantum regression algorithm models.By adapting the learning concept from machine learning,we render data encoding a learnable process.This allowed us to study the role of quantum correlation in data encoding.Through numerical simulations of various regression tasks,we demonstrate the efficacy of our variational data encoding,particularly post-learning from instructional data.Moreover,we delve into the role of quantum correlation in enhancing task performance,especially in noisy environments.Our findings underscore the critical role of quantum correlation in not only bolstering performance but also in mitigating noise interference,thus advancing the frontier of quantum computing.
基金supported by the Hunan Provincial Natrual Science Foundation of China(2022JJ30103)“the 14th Five-Year”Key Disciplines and Application Oriented Special Disciplines of Hunan Province(Xiangjiaotong[2022],351)the Science and Technology Innovation Program of Hunan Province(2016TP1020).
文摘Correlation power analysis(CPA)combined with genetic algorithms(GA)now achieves greater attack efficiency and can recover all subkeys simultaneously.However,two issues in GA-based CPA still need to be addressed:key degeneration and slow evolution within populations.These challenges significantly hinder key recovery efforts.This paper proposes a screening correlation power analysis framework combined with a genetic algorithm,named SFGA-CPA,to address these issues.SFGA-CPA introduces three operations designed to exploit CPA characteris-tics:propagative operation,constrained crossover,and constrained mutation.Firstly,the propagative operation accelerates population evolution by maximizing the number of correct bytes in each individual.Secondly,the constrained crossover and mutation operations effectively address key degeneration by preventing the compromise of correct bytes.Finally,an intelligent search method is proposed to identify optimal parameters,further improving attack efficiency.Experiments were conducted on both simulated environments and real power traces collected from the SAKURA-G platform.In the case of simulation,SFGA-CPA reduces the number of traces by 27.3%and 60%compared to CPA based on multiple screening methods(MS-CPA)and CPA based on simple GA method(SGA-CPA)when the success rate reaches 90%.Moreover,real experimental results on the SAKURA-G platform demonstrate that our approach outperforms other methods.
基金supported by the National Natural Science Foundation of China(32272316)Beijing Innovation Team of Livestock Industry Technology System(BAIC05-2022)Guangxi Science and Technology Project(AD20297088).
文摘Nutrients in human milk,including minerals,relate growth and development of breast-fed infants.Tibetan mother-infant dyads possess unique characteristics on early nutrition due to their featured long-lasting lifestyle.This study longitudinally investigated the relationship between the mineral composition in human milk and the Z-scores of infants among Tibetan mother-infant dyads during their first 6 months postpartum through a prospective cohort study.The results show that the minerals of Na,Mg,K,Ca,Cu,Zn,and Se were of higher levels in colostrum than other lactation stages.Several minerals were below the recommended values for infants according to Chinese dietary guidelines.Besides,a large proportion of infant Z-scores were below-2 as lactation period continued.Multivariate statistical analysis revealed that classifications and correlations in varying degrees were observed between minerals in human milk and infant Z-scores.These findings will be advantageous for research upon Chinese early nutrition and progress of tailor-made infant formula.