Electron correlation is encoded directly in the distribution of the energetic electrons produced in a recollision-impact double ionization process, and varies with the laser field and the target atoms. In order to get...Electron correlation is encoded directly in the distribution of the energetic electrons produced in a recollision-impact double ionization process, and varies with the laser field and the target atoms. In order to get equivalent electron correlation effects, one should enlarge the laser intensity cubically and the laser frequency linearly in proportion to the second ionization potentials of the target atoms. The physical mechanism behind the transform is to keep the ponderomotive parameter unchanged when the laser frequency is enlarged.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61475168 and 11674231)sponsored by Shanghai Gaofeng&Gaoyuan Project for University Academic Program Development(Zhang)
文摘Electron correlation is encoded directly in the distribution of the energetic electrons produced in a recollision-impact double ionization process, and varies with the laser field and the target atoms. In order to get equivalent electron correlation effects, one should enlarge the laser intensity cubically and the laser frequency linearly in proportion to the second ionization potentials of the target atoms. The physical mechanism behind the transform is to keep the ponderomotive parameter unchanged when the laser frequency is enlarged.