期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Just-in-time learning based integrated MPC-ILC control for batch processes 被引量:4
1
作者 Li Jia Wendan Tan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第8期1713-1720,共8页
Considering the two-dimension(2 D) characteristic and the unknown optimal trajectory problem of the batch processes, an integrated model predictive control-iterative learning control(MPC-ILC) for batch processes is pr... Considering the two-dimension(2 D) characteristic and the unknown optimal trajectory problem of the batch processes, an integrated model predictive control-iterative learning control(MPC-ILC) for batch processes is proposed in this paper. Firstly, the batch-axis information and time-axis information are combined into one quadratic performance index. It implies the integration of ILC and MPC algorithm idea, which leads to superior tracking performance and better robustness against disturbance and uncertainty. To address the problem of the unknown optimal trajectory, both time-varying prediction horizon and end product quality control are employed. Moreover, an integrated 2 D just-in-time learning(JITL) model is used to improve the predictive accuracy. Furthermore, rigorous description and proof are presented to prove the convergence and tracking performance of the proposed MPC-ILC strategy. The simulation results show the effectiveness of the proposed method. 展开更多
关键词 Model predictive control Batch process just-in-time learning (JITL) model
下载PDF
Supervised local and non-local structure preserving projections with application to just-in-time learning for adaptive soft sensor 被引量:4
2
作者 邵伟明 田学民 王平 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期1925-1934,共10页
In soft sensor field, just-in-time learning(JITL) is an effective approach to model nonlinear and time varying processes. However, most similarity criterions in JITL are computed in the input space only while ignoring... In soft sensor field, just-in-time learning(JITL) is an effective approach to model nonlinear and time varying processes. However, most similarity criterions in JITL are computed in the input space only while ignoring important output information, which may lead to inaccurate construction of relevant sample set. To solve this problem, we propose a novel supervised feature extraction method suitable for the regression problem called supervised local and non-local structure preserving projections(SLNSPP), in which both input and output information can be easily and effectively incorporated through a newly defined similarity index. The SLNSPP can not only retain the virtue of locality preserving projections but also prevent faraway points from nearing after projection,which endues SLNSPP with powerful discriminating ability. Such two good properties of SLNSPP are desirable for JITL as they are expected to enhance the accuracy of similar sample selection. Consequently, we present a SLNSPP-JITL framework for developing adaptive soft sensor, including a sparse learning strategy to limit the scale and update the frequency of database. Finally, two case studies are conducted with benchmark datasets to evaluate the performance of the proposed schemes. The results demonstrate the effectiveness of LNSPP and SLNSPP. 展开更多
关键词 Adaptive soft sensor just-in-time learning Supervised local and non-local structure preserving projections Locality preserving projections Database monitoring
下载PDF
Online Batch Process Monitoring Based on Just-in-Time Learning and Independent Component Analysis 被引量:1
3
作者 WANG Li SHI Hong-bo 《Journal of Donghua University(English Edition)》 EI CAS 2016年第6期944-948,共5页
A new method was developed for batch process monitoring in this paper. In the devdopad method, just-in-time learning ( JITL ) and independent component analysis (ICA) were integrated to build JITL-ICA monitoring s... A new method was developed for batch process monitoring in this paper. In the devdopad method, just-in-time learning ( JITL ) and independent component analysis (ICA) were integrated to build JITL-ICA monitoring scheme. JITL was employed to tackle with the characteristics of batch process such as inherent time- varying dynamics, multiple operating phases, and especially the case of uneven length stage. According to new coming test data, the most correlated segmentation was obtained from batch-wise unfolded training data by JITL. Then, ICA served as the principal components extraction approach. Therefore, the non.Gaussian distributed data can also be addressed under this modeling framework. The effectiveness and superiority of JITL-ICA based monitoring method was demonstrated by fed-batch penicillin fermentation. 展开更多
关键词 batch process monitoring just-in-time learning(JITL) independent component analysis(ICA)
下载PDF
Implementing Augmented Reality in Learning
4
作者 Ajit Singh 《Psychology Research》 2019年第4期172-177,共6页
Technologies are changing and ever growing.One of the newest developing technologies is augmented reality(AR),which can be applied to many different existing technologies,such as computers,tablets,and smartphones.AR t... Technologies are changing and ever growing.One of the newest developing technologies is augmented reality(AR),which can be applied to many different existing technologies,such as computers,tablets,and smartphones.AR technology can also be utilized through wearable components,for example,glasses.Throughout this paper review on AR,the following aspects are discussed at length:research explored,theoretical foundations,applications in education,challenges,reactions,and implications.Several different types of AR devices and applications are discussed at length,and an in-depth analysis is done on several studies that have implemented AR technology in an educational setting. 展开更多
关键词 AUGMENTED REALITY learning and development EDUCATOR flow theory just-in-time learning
下载PDF
Local multi-model integrated soft sensor based on just-in-time learning for mechanical properties of hot strip mill process 被引量:1
5
作者 Jie Dong Ying-ze Tian Kai-xiang Peng 《Journal of Iron and Steel Research International》 SCIE EI CSCD 2021年第7期830-841,共12页
The mechanical properties of hot rolled strip are the key index of product quality,and the soft sensing of them is an important decision basis for the control and optimization of hot rolling process.To solve the probl... The mechanical properties of hot rolled strip are the key index of product quality,and the soft sensing of them is an important decision basis for the control and optimization of hot rolling process.To solve the problem that it is difficult to measure the mechanical properties of hot rolled strip in time and accurately,a soft sensor based on ensemble local modeling was proposed.Firstly,outliers of process data are removed by local outlier factor.After standardization and transformation,normal data that can be used in the model are obtained.Next,in order to avoid redundant variables participating in modeling and reducing performance of models,feature selection was applied combing the mechanism of hot rolling process and mutual information among variables.Then,features of samples were extracted by supervised local preserving projection,and a prediction model was constructed by Gaussian process regression based on just-in-time learning(JITL).Other JITL-based models,such as support vector regression and gradient boosting regression tree models,keep all variables and make up for the lost information during dimension reduction.Finally,the soft sensor was developed by integrating individual models through stacking method.Superiority and reliability of proposed soft sensors were verified by actual process data from a real hot rolling process. 展开更多
关键词 Soft sensor just-in-time learning MULTI-MODEL Hot rolling
原文传递
Effort-aware cross-project just-in-time defect prediction framework for mobile apps
6
作者 Tian CHENG Kunsong ZHAO +2 位作者 Song SUN Muhammad MATEEN Junhao WEN 《Frontiers of Computer Science》 SCIE EI CSCD 2022年第6期15-29,共15页
As the boom of mobile devices,Android mobile apps play an irreplaceable roles in people’s daily life,which have the characteristics of frequent updates involving in many code commits to meet new requirements.Just-in-... As the boom of mobile devices,Android mobile apps play an irreplaceable roles in people’s daily life,which have the characteristics of frequent updates involving in many code commits to meet new requirements.Just-in-Time(JIT)defect prediction aims to identify whether the commit instances will bring defects into the new release of apps and provides immediate feedback to developers,which is more suitable to mobile apps.As the within-app defect prediction needs sufficient historical data to label the commit instances,which is inadequate in practice,one alternative method is to use the cross-project model.In this work,we propose a novel method,called KAL,for cross-project JIT defect prediction task in the context of Android mobile apps.More specifically,KAL first transforms the commit instances into a high-dimensional feature space using kernel-based principal component analysis technique to obtain the representative features.Then,the adversarial learning technique is used to extract the common feature embedding for the model building.We conduct experiments on 14 Android mobile apps and employ four effort-aware indicators for performance evaluation.The results on 182 cross-project pairs demonstrate that our proposed KAL method obtains better performance than 20 comparative methods. 展开更多
关键词 kernel-based principal component analysis adversarial learning just-in-time defect prediction cross-project model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部