By means of a representation of the elementary objects by the Lagrange density and by the commutators of the communication relations, correlations can be formed using the Fourier transform, which under the conditions ...By means of a representation of the elementary objects by the Lagrange density and by the commutators of the communication relations, correlations can be formed using the Fourier transform, which under the conditions of the Hamilton principle, describes correlation structures of the elementary objects with oscillator properties. The correlation structures obtained in this way are characterized by physical information, the essential component of which is the action. The correlation structures describe the physical properties and their interactions under the sole condition of the Hamilton’s principle. The structure, the properties and the interactions of elementary objects can be led back in this way to a fundamental four dimensional structure, which is therefore in their different modifications the building block of nature. With the presented method, an alternative interpretation of elementary physical effects to quantum mechanics is obtained. This report provides an overview of the fundamentals and statements of physical information theory and its consequences for understanding the nature of elementary objects.展开更多
In physical information theory elementary objects are represented as correlation structures with oscillator properties and characterized by action. The procedure makes it possible to describe the photons of positive a...In physical information theory elementary objects are represented as correlation structures with oscillator properties and characterized by action. The procedure makes it possible to describe the photons of positive and negative charges by positive and negative real action;gravitons are represented in equal amounts by positive and negative real, i.e., virtual action, and the components of the vacuum are characterized by deactivated virtual action. An analysis of the currents in the correlation structures of photons of static Maxwell fields with wave and particle properties, of the Maxwell vacuum and of the gravitons leads to a uniform three-dimensional representation of the structure of the action. Based on these results, a basic structure consisting of a system of oscillators is proposed, which describe the properties of charges and masses and interact with the photons of static Maxwell fields and with gravitons. All properties of the elemental components of nature can thus be traced back to a basic structure of action. It follows that nature can be derived from a uniform structure and this structure of action must therefore also be the basis of the origin of the cosmos.展开更多
The electron concentration horizontal gradient vector of the ionosphere and its south-north and east-west components over Chongqing station are analyzed and calculated, using the first approximation, time correlation ...The electron concentration horizontal gradient vector of the ionosphere and its south-north and east-west components over Chongqing station are analyzed and calculated, using the first approximation, time correlation and space correlation and another approach introduced. And then, the validity of the two methods is analyzed and compared.展开更多
Pseudorange bias has become a practical obstacle in the field of high-precision global navigation satellite system(GNSS)applications,which greatly restricts the further development of high-precision applications.Unfor...Pseudorange bias has become a practical obstacle in the field of high-precision global navigation satellite system(GNSS)applications,which greatly restricts the further development of high-precision applications.Unfortunately,no studies have been conducted on the pseudorange biases of the BeiDou navigation satellite system(BDS).To mitigate the effects of pseudorange biases on the BDS performance to the greatest extent possible,the origin of such BDS pseudorange biases are first thoroughly illustrated,based upon which the dependency of the biases on the receiver configurations are studied in detail.Owing to the limitations regarding the parameter re-settings for hardware receivers,software receiver technology was used to achieve the ergodicity of the receiver parameters,such as the correlator spacing and front-end bandwidth,using high-fidelity signal observations collected by a 40-m-high gain dish antenna at Haoping Observatory.Based on this,the pseudorange biases of the BDS B1I and B3I signals and their dependency on different correlator spacings and front-end bandwidths were adequately provided.Finally,herein,the suggested settings of the correlator spacing and front-end bandwidth for BDS receivers are in detail proposed for the first time.As a result,the pseudorange biases of the BDS signals will be less than 20 cm,reaching even under 10 cm,under this condition.This study will provide special attention to GNSS pseudorange biases,and will significantly promote a clear definition of the appropriate receiver parameter settings in the interface control documents of BDS and other individual satellite systems.展开更多
This is the second paper in a series following Tian and Xu(2015), on the construction of a mathematical theory of the gauged linear σ-model(GLSM). In this paper, assuming the existence of virtual moduli cycles and th...This is the second paper in a series following Tian and Xu(2015), on the construction of a mathematical theory of the gauged linear σ-model(GLSM). In this paper, assuming the existence of virtual moduli cycles and their certain properties, we define the correlation function of GLSM for a fixed smooth rigidified r-spin curve.展开更多
文摘By means of a representation of the elementary objects by the Lagrange density and by the commutators of the communication relations, correlations can be formed using the Fourier transform, which under the conditions of the Hamilton principle, describes correlation structures of the elementary objects with oscillator properties. The correlation structures obtained in this way are characterized by physical information, the essential component of which is the action. The correlation structures describe the physical properties and their interactions under the sole condition of the Hamilton’s principle. The structure, the properties and the interactions of elementary objects can be led back in this way to a fundamental four dimensional structure, which is therefore in their different modifications the building block of nature. With the presented method, an alternative interpretation of elementary physical effects to quantum mechanics is obtained. This report provides an overview of the fundamentals and statements of physical information theory and its consequences for understanding the nature of elementary objects.
文摘In physical information theory elementary objects are represented as correlation structures with oscillator properties and characterized by action. The procedure makes it possible to describe the photons of positive and negative charges by positive and negative real action;gravitons are represented in equal amounts by positive and negative real, i.e., virtual action, and the components of the vacuum are characterized by deactivated virtual action. An analysis of the currents in the correlation structures of photons of static Maxwell fields with wave and particle properties, of the Maxwell vacuum and of the gravitons leads to a uniform three-dimensional representation of the structure of the action. Based on these results, a basic structure consisting of a system of oscillators is proposed, which describe the properties of charges and masses and interact with the photons of static Maxwell fields and with gravitons. All properties of the elemental components of nature can thus be traced back to a basic structure of action. It follows that nature can be derived from a uniform structure and this structure of action must therefore also be the basis of the origin of the cosmos.
基金Supported by the National Natural Science Foundation of China(6 95 710 2 0 ) and the Research Fund for the Doctoral Program of H
文摘The electron concentration horizontal gradient vector of the ionosphere and its south-north and east-west components over Chongqing station are analyzed and calculated, using the first approximation, time correlation and space correlation and another approach introduced. And then, the validity of the two methods is analyzed and compared.
基金the National Nature Science Foundation of China(Nos.61501430 and 41604029)the State Key Laboratory of Geo-information Engineering(SKLGIE2017-M-2-2)。
文摘Pseudorange bias has become a practical obstacle in the field of high-precision global navigation satellite system(GNSS)applications,which greatly restricts the further development of high-precision applications.Unfortunately,no studies have been conducted on the pseudorange biases of the BeiDou navigation satellite system(BDS).To mitigate the effects of pseudorange biases on the BDS performance to the greatest extent possible,the origin of such BDS pseudorange biases are first thoroughly illustrated,based upon which the dependency of the biases on the receiver configurations are studied in detail.Owing to the limitations regarding the parameter re-settings for hardware receivers,software receiver technology was used to achieve the ergodicity of the receiver parameters,such as the correlator spacing and front-end bandwidth,using high-fidelity signal observations collected by a 40-m-high gain dish antenna at Haoping Observatory.Based on this,the pseudorange biases of the BDS B1I and B3I signals and their dependency on different correlator spacings and front-end bandwidths were adequately provided.Finally,herein,the suggested settings of the correlator spacing and front-end bandwidth for BDS receivers are in detail proposed for the first time.As a result,the pseudorange biases of the BDS signals will be less than 20 cm,reaching even under 10 cm,under this condition.This study will provide special attention to GNSS pseudorange biases,and will significantly promote a clear definition of the appropriate receiver parameter settings in the interface control documents of BDS and other individual satellite systems.
基金supported by National Science Foundation of USA(Grant No.DMS-1309359)National Natural Science Foundation of China(Grant No.11331001)
文摘This is the second paper in a series following Tian and Xu(2015), on the construction of a mathematical theory of the gauged linear σ-model(GLSM). In this paper, assuming the existence of virtual moduli cycles and their certain properties, we define the correlation function of GLSM for a fixed smooth rigidified r-spin curve.