A series of austenitic cast iron samples with different compositions were cast and a part of nickel in the samples was replaced by manganese for economic reason. Erosion–corrosion tests were conducted under 2wt% sulf...A series of austenitic cast iron samples with different compositions were cast and a part of nickel in the samples was replaced by manganese for economic reason. Erosion–corrosion tests were conducted under 2wt% sulfuric acid and 15wt% quartz sand. The results show that the matrix of cast irons remains austenite after a portion of nickel is replaced with manganese.(Fe,Cr)3C is a common phase in the cast irons, and nickel is the main alloying element in high-nickel cast iron; whereas,(Fe,Mn)3C is observed with the increased manganese content in low-nickel cast iron. Under erosion–corrosion tests, the weight-loss rates of the cast irons increase with increasing time. Wear plays a more important role than corrosion in determining the weight loss. It is indicated that the processes of weight loss for the cast irons with high and low nickel contents are different. The erosion resistance of the cast iron containing 7.29wt% nickel and 6.94wt% manganese is equivalent to that of the cast iron containing 13.29wt% nickel.展开更多
BACKGROUND The phenomenon of liver regeneration after partial hepatectomy(PH)is still a subject of considerable interest due to the increasing frequency of half liver transplantation on the one hand,and on the other h...BACKGROUND The phenomenon of liver regeneration after partial hepatectomy(PH)is still a subject of considerable interest due to the increasing frequency of half liver transplantation on the one hand,and on the other hand,new surgical approaches which allow removal of massive space-occupying hepatic tumors,which earlier was considered as inoperable.Interestingly,the mechanisms of liver regeneration are extensively studied after PH but less attention is paid to the architectonics of the regenerated organ.Because of this,the question“How does the structure of regenerated liver differ from normal,regular liver?”has not been fully answered yet.Furthermore,almost without any attention is left the liver's structural transformation after repeated hepatectomy(of the re-regenereted liver).ATM To compare the architectonics of the lobules and circulatory bed of normal,regenerated and re-regenerated livers.METHODS The livers of 40 adult,male,albino Wistar rats were studied.14 rats were subjected to PH-the 1st study group(SG1);10 rats underwent repeated PH–the 2nd study group(SG2);16 rats were subjected to sham operation-control group(CG);The livers were studied after 9 months from PH,and after 6 months from repeated PH.Cytological(Schiff reaction for the determination of DNA concentration),histological(H&E,Masson trichrome,CK8 Immunohistochemical marker,transparent slides after Indian Ink injection,),morphometrical(hepatocytes areas,perimeters and ploidy)and Electron Microscopical(Scanning Electron Microscopy of corrosion casts)methods were used.RESULTS In the SG1 and SG2,the area of hepatocytes and their perimeter are increased compared to the CG(P<0.05).However,the areas and perimeters of the hepatocytes of the SG1 and SG2 groups reveal a lesser difference.In regenerated(SG1)and re-regenerated(SG2)livers,the hepatocytes form the remodeled lobules,which size(300-1200μm)exceeds the sizes of the lobules from CG(300-600μm).The remodeled lobules(especially the“mega-lobules”with the sizes 1000-1200μm)contain the transformed meshworks of the sinusoids,the part of which is dilated asymmetrically.This meshwork might have originated from the several portal venules(interlobular and/or inlet).The boundaries between the adjacent lobules(including mega-lobules)are widened and filled by connective tissue fibers,which gives the liver parenchyma a nodular look.In SG2 the unevenness of sinusoid diameters,as well as the boundaries between the lobules(including the mega-lobules)are more vividly expressed in comparison with SG1.The liver tissue of both SG1 and SG2 is featured by the slightly expressed ductular reaction.CONCLUSION Regenerated and re-regenerated livers in comparison with normal liver contain hypertrophied hepatocytes with increased ploidy which together with transformed sinusoidal and biliary meshworks form the remodeled lobulli.展开更多
The research and development status of casting magnesium alloys including the commercial casting alloys and the new types casting alloys are reviewed,with more attention to microstructure and mechanical properties of ...The research and development status of casting magnesium alloys including the commercial casting alloys and the new types casting alloys are reviewed,with more attention to microstructure and mechanical properties of modified-AZ91,AM60 and WE43 alloys with various additions,and new types of low cost casting alloys and high strength casting alloys.The modification and/or refinement of Mg2 Si phase in Mg-Al-Si based casting alloys by various additions are discussed and new purifying technologies for casting magnesium alloys are introduced to improve the performance.The modified AZ81 alloy with reduced impurities is found to have the tensile strength of 280 ± 6 MPa and elongation of 16% ± 0.7%.The fatigue strength of AZ91 D alloy could be obviously improved by addition of Ce and Nd.The Mg-16Gd-2Ag-0.3Zr alloy exhibits very high tensile and yield strengths(UTS:423 MPa and YS:328 MPa);however,its elongation still needs to be improved.展开更多
Corrosion in drinking water distribution systems(DWDSs)may lead to pipe failures and water quality deterioration;biocorrosion is the most common type.Chlorine disinfectants are widely used in DWDSs to inhibit microorg...Corrosion in drinking water distribution systems(DWDSs)may lead to pipe failures and water quality deterioration;biocorrosion is the most common type.Chlorine disinfectants are widely used in DWDSs to inhibit microorganism growth,but these also promote electrochemical corrosion to a certain extent.This study explored the independent and synergistic effects of chlorine and microorganisms on pipeline corrosion.Sodium hypochlorite(NaOCl)at different concentrations(0,0.25,0.50,and 0.75 mg/L)and iron-oxidizing bacteria(IOB)were added to the reaction system,and a biofilm annular reactor(BAR)was employed to simulate operational water supply pipes and explain the composite effects.The degree of corrosion became severe with increasing NaOCl dosage.IOB accelerated the corrosion rate at an early stage,after which the reaction system gradually stabilized.When NaOCl and IOB existed together in the BAR,both synergistic and antagonistic effects occurred during the corrosion process.The AOC content increased due to the addition of NaOCl,which is conducive to bacterial regrowth.However,biofilm on cast iron coupons was greatly influenced by the disinfectant,leading to a decrease in microbial biomass over time.More research is needed to provide guidelines for pipeline corrosion control.展开更多
Background This study aimed to investigate the effect of pcDNA3.1-vascular endothelial growth factor (VEGF)165 vector on vertebral cartilage endplate vascular buds and intervertebral discs. Methods Rabbits were rand...Background This study aimed to investigate the effect of pcDNA3.1-vascular endothelial growth factor (VEGF)165 vector on vertebral cartilage endplate vascular buds and intervertebral discs. Methods Rabbits were randomly assigned to the control and experimental groups with 10 in each. In the experimental group, we anesthetized the rabbits and exposed the front vertebral body. Using the mark of the longitudinal ossature of the front vertebral body of the lumbar vertebrae, we advanced a needle at the central point of the front fourth and fifth lumbar intervertebral discs and injected 20 pl pcDNA3.1-VEGF165. Similarly, in the control group, we injected 20 IJl pcDNA3.1. At 4 and 8 weeks post-injection, we examined the changes of the vertebral cartilage endplate using X-ray radiograph, histology, and scanning electron microscopy. Results The vertebral cartilage endplate calcification and degeneration in the experimental group were less than those in the control group at 8 weeks post-operation. The average number and diameter of vascular buds obviously increased in the experimental group at 4 and 8 weeks post-operation. The number of vascular buds and the diameter in the region of the inner annulus increased when compared to those in the area near the nucleus pulposus. Conclusions The pcDNA3.1-VEGF165 plasmid can increase the average number and diameter of vascular buds and decelerate intervertebral disc degeneration.展开更多
Background There have been no detailed reports of the three-dimensional structure and the relationship between the external and internal vascularizations observed successively for a long duration in the rat fetus, alt...Background There have been no detailed reports of the three-dimensional structure and the relationship between the external and internal vascularizations observed successively for a long duration in the rat fetus, although many authors have studied the vascular morphology of the developing brain. This study examined the three-dimensional structure of both the external and internal vascularizations of the prenatal rat telencephalon from embryonic days 12 (E12) to 20 (E20).Method A microvascular casting method for scanning electron microscopy (SEM) was used in this study, along with vascular staining using gold-gelatine solution-autometallography (GGS-AMG) after intravascular injection of colloidal gold, as well as hematoxylin-eosin ( HE) staining for paraffin embedded specimens.Results In GGS-AMG stains, E16 fetuses had a few short perforating cortical blood vessels (SPCVs); E17 fetuses had long perforating cortico-medullary vessels (LPCVs). Older fetuses had specific patterns of vascular networks in the cortex and the deeper subcortical part of the telencephalon. In the cortex, fine longitudinal blood vessels were connected by transverse channels. The deep telencephalon had fine blood vessels running in all directions. Using SEM, the external vascularization was already visible in E12 fetuses as arborizations of arterial branches, forming a mesh of fine vascular networks covering the telencephalon. A coralliform fine venous plexus was observed in the external vascularization of E16 fetuses. There were ring-like anastomoses and bud-like protrusions in the network of small blood vessels, most likely the angiogenesis of fetal vessels. From E12 to E16, an immature and incomplete internal vascularization began to appear. There were short blood vessels with ballooned terminals branching from the external vascularization. They penetrated the brain tissue to form networks in the superficial layer, comparable to SPCVs. In E17 to E20 fetuses, tortuous venous branches, straight arterial blood vessels, and a fine network of small blood vessels formed the external vascularization. There were fewer arterial than venous branches connecting to the fine networks of small blood vessels. LPCVs were noted at E17, at the time the white matter emerged. They branched from the external vascularization, and perpendicularly penetrated the brain surface, traversing the cortical plate, and entering into the deep brain. At E17, arterial and venous blood vessels could be clearly distinguished in the external vascularization. At E20, the cortex and white matter contained specific arrangements of networks of fine blood vessels, as seen by GGS-AMG staining.Conclusion These findings show that the development of both the external and internalvascularization follows the development of thetelencephalon. In particular, the emergence ofthe cortical plate and white matter on E16 andE17 influence the development of both theinternal and the external vascularization. Thelaminal arrangement of blood vessels was notobserved corresponding to the respective laminalneuronal layers.展开更多
The effects of cast iron pipe corrosion onwater quality risk and microbial ecology in drinking water distribution systems(DWDSs)were investigated.It was found that trihalomethane(THMs)concentration and antibiotic resi...The effects of cast iron pipe corrosion onwater quality risk and microbial ecology in drinking water distribution systems(DWDSs)were investigated.It was found that trihalomethane(THMs)concentration and antibiotic resistance genes(ARGs)increased sharply in the old DWDSs.Under the same residual chlorine concentration conditions,the adenosine triphos-phate concentration in the effluent of old DWDSs(Eff-old)was significantly higher than that in the effluent of newDWDSs.Moreover,stronger bioflocculation ability andweaker hy-drophobicity coexisted in the extracellular polymeric substances of Eff-old,meanwhile,iron particles could be well inserted into the structure of the biofilms to enhance the mechanical strength and stability of the biofilms,hence enhancing the formation of THMs.Old DWDSs significantly influenced the microbial community of bulk water and triggered stronger mi-crobial antioxidant systems response,resulting in higher ARGs abundance.Corroded cast iron pipes induced a unique interaction system of biofilms,chlorine,and corrosion prod-ucts.Therefore,as the age of cast iron pipes increases,the fluctuation of water quality and microbial ecology should be paid more attention to maintain the safety of tap water.展开更多
基金financially supported by the National Nature Science Foundation of China (No. 51101109)
文摘A series of austenitic cast iron samples with different compositions were cast and a part of nickel in the samples was replaced by manganese for economic reason. Erosion–corrosion tests were conducted under 2wt% sulfuric acid and 15wt% quartz sand. The results show that the matrix of cast irons remains austenite after a portion of nickel is replaced with manganese.(Fe,Cr)3C is a common phase in the cast irons, and nickel is the main alloying element in high-nickel cast iron; whereas,(Fe,Mn)3C is observed with the increased manganese content in low-nickel cast iron. Under erosion–corrosion tests, the weight-loss rates of the cast irons increase with increasing time. Wear plays a more important role than corrosion in determining the weight loss. It is indicated that the processes of weight loss for the cast irons with high and low nickel contents are different. The erosion resistance of the cast iron containing 7.29wt% nickel and 6.94wt% manganese is equivalent to that of the cast iron containing 13.29wt% nickel.
基金the Shota Rustaveli National Science Foundation of Georgia,No.DP2016_22[New Interfaculty Interdisciplinary Structured Doctoral Programme“Translational Biomedicine”(Direction–“Hepatology”)].
文摘BACKGROUND The phenomenon of liver regeneration after partial hepatectomy(PH)is still a subject of considerable interest due to the increasing frequency of half liver transplantation on the one hand,and on the other hand,new surgical approaches which allow removal of massive space-occupying hepatic tumors,which earlier was considered as inoperable.Interestingly,the mechanisms of liver regeneration are extensively studied after PH but less attention is paid to the architectonics of the regenerated organ.Because of this,the question“How does the structure of regenerated liver differ from normal,regular liver?”has not been fully answered yet.Furthermore,almost without any attention is left the liver's structural transformation after repeated hepatectomy(of the re-regenereted liver).ATM To compare the architectonics of the lobules and circulatory bed of normal,regenerated and re-regenerated livers.METHODS The livers of 40 adult,male,albino Wistar rats were studied.14 rats were subjected to PH-the 1st study group(SG1);10 rats underwent repeated PH–the 2nd study group(SG2);16 rats were subjected to sham operation-control group(CG);The livers were studied after 9 months from PH,and after 6 months from repeated PH.Cytological(Schiff reaction for the determination of DNA concentration),histological(H&E,Masson trichrome,CK8 Immunohistochemical marker,transparent slides after Indian Ink injection,),morphometrical(hepatocytes areas,perimeters and ploidy)and Electron Microscopical(Scanning Electron Microscopy of corrosion casts)methods were used.RESULTS In the SG1 and SG2,the area of hepatocytes and their perimeter are increased compared to the CG(P<0.05).However,the areas and perimeters of the hepatocytes of the SG1 and SG2 groups reveal a lesser difference.In regenerated(SG1)and re-regenerated(SG2)livers,the hepatocytes form the remodeled lobules,which size(300-1200μm)exceeds the sizes of the lobules from CG(300-600μm).The remodeled lobules(especially the“mega-lobules”with the sizes 1000-1200μm)contain the transformed meshworks of the sinusoids,the part of which is dilated asymmetrically.This meshwork might have originated from the several portal venules(interlobular and/or inlet).The boundaries between the adjacent lobules(including mega-lobules)are widened and filled by connective tissue fibers,which gives the liver parenchyma a nodular look.In SG2 the unevenness of sinusoid diameters,as well as the boundaries between the lobules(including the mega-lobules)are more vividly expressed in comparison with SG1.The liver tissue of both SG1 and SG2 is featured by the slightly expressed ductular reaction.CONCLUSION Regenerated and re-regenerated livers in comparison with normal liver contain hypertrophied hepatocytes with increased ploidy which together with transformed sinusoidal and biliary meshworks form the remodeled lobulli.
基金supported by the National Natural Science Foundation of China(Grant Nos.51531002,51474043 and 51571043)the Ministry of Education of China(SRFDR 20130191110018)+1 种基金Chongqing Municipal Government(CSTC2013JCYJC60001,CEC project,Two River Scholar Project and The Chief Scientist Studio Project)Fundamental Research Funds for the Central Universities(No.106112015CDJZR135515)
文摘The research and development status of casting magnesium alloys including the commercial casting alloys and the new types casting alloys are reviewed,with more attention to microstructure and mechanical properties of modified-AZ91,AM60 and WE43 alloys with various additions,and new types of low cost casting alloys and high strength casting alloys.The modification and/or refinement of Mg2 Si phase in Mg-Al-Si based casting alloys by various additions are discussed and new purifying technologies for casting magnesium alloys are introduced to improve the performance.The modified AZ81 alloy with reduced impurities is found to have the tensile strength of 280 ± 6 MPa and elongation of 16% ± 0.7%.The fatigue strength of AZ91 D alloy could be obviously improved by addition of Ce and Nd.The Mg-16Gd-2Ag-0.3Zr alloy exhibits very high tensile and yield strengths(UTS:423 MPa and YS:328 MPa);however,its elongation still needs to be improved.
基金grateful for primary support from the National Natural Science Foundation of China(Grant No.51979194).
文摘Corrosion in drinking water distribution systems(DWDSs)may lead to pipe failures and water quality deterioration;biocorrosion is the most common type.Chlorine disinfectants are widely used in DWDSs to inhibit microorganism growth,but these also promote electrochemical corrosion to a certain extent.This study explored the independent and synergistic effects of chlorine and microorganisms on pipeline corrosion.Sodium hypochlorite(NaOCl)at different concentrations(0,0.25,0.50,and 0.75 mg/L)and iron-oxidizing bacteria(IOB)were added to the reaction system,and a biofilm annular reactor(BAR)was employed to simulate operational water supply pipes and explain the composite effects.The degree of corrosion became severe with increasing NaOCl dosage.IOB accelerated the corrosion rate at an early stage,after which the reaction system gradually stabilized.When NaOCl and IOB existed together in the BAR,both synergistic and antagonistic effects occurred during the corrosion process.The AOC content increased due to the addition of NaOCl,which is conducive to bacterial regrowth.However,biofilm on cast iron coupons was greatly influenced by the disinfectant,leading to a decrease in microbial biomass over time.More research is needed to provide guidelines for pipeline corrosion control.
基金This study was supported by a grant from the National Natural Science Foundation of China,the Anhui Province Education Department Key Fund Project
文摘Background This study aimed to investigate the effect of pcDNA3.1-vascular endothelial growth factor (VEGF)165 vector on vertebral cartilage endplate vascular buds and intervertebral discs. Methods Rabbits were randomly assigned to the control and experimental groups with 10 in each. In the experimental group, we anesthetized the rabbits and exposed the front vertebral body. Using the mark of the longitudinal ossature of the front vertebral body of the lumbar vertebrae, we advanced a needle at the central point of the front fourth and fifth lumbar intervertebral discs and injected 20 pl pcDNA3.1-VEGF165. Similarly, in the control group, we injected 20 IJl pcDNA3.1. At 4 and 8 weeks post-injection, we examined the changes of the vertebral cartilage endplate using X-ray radiograph, histology, and scanning electron microscopy. Results The vertebral cartilage endplate calcification and degeneration in the experimental group were less than those in the control group at 8 weeks post-operation. The average number and diameter of vascular buds obviously increased in the experimental group at 4 and 8 weeks post-operation. The number of vascular buds and the diameter in the region of the inner annulus increased when compared to those in the area near the nucleus pulposus. Conclusions The pcDNA3.1-VEGF165 plasmid can increase the average number and diameter of vascular buds and decelerate intervertebral disc degeneration.
文摘Background There have been no detailed reports of the three-dimensional structure and the relationship between the external and internal vascularizations observed successively for a long duration in the rat fetus, although many authors have studied the vascular morphology of the developing brain. This study examined the three-dimensional structure of both the external and internal vascularizations of the prenatal rat telencephalon from embryonic days 12 (E12) to 20 (E20).Method A microvascular casting method for scanning electron microscopy (SEM) was used in this study, along with vascular staining using gold-gelatine solution-autometallography (GGS-AMG) after intravascular injection of colloidal gold, as well as hematoxylin-eosin ( HE) staining for paraffin embedded specimens.Results In GGS-AMG stains, E16 fetuses had a few short perforating cortical blood vessels (SPCVs); E17 fetuses had long perforating cortico-medullary vessels (LPCVs). Older fetuses had specific patterns of vascular networks in the cortex and the deeper subcortical part of the telencephalon. In the cortex, fine longitudinal blood vessels were connected by transverse channels. The deep telencephalon had fine blood vessels running in all directions. Using SEM, the external vascularization was already visible in E12 fetuses as arborizations of arterial branches, forming a mesh of fine vascular networks covering the telencephalon. A coralliform fine venous plexus was observed in the external vascularization of E16 fetuses. There were ring-like anastomoses and bud-like protrusions in the network of small blood vessels, most likely the angiogenesis of fetal vessels. From E12 to E16, an immature and incomplete internal vascularization began to appear. There were short blood vessels with ballooned terminals branching from the external vascularization. They penetrated the brain tissue to form networks in the superficial layer, comparable to SPCVs. In E17 to E20 fetuses, tortuous venous branches, straight arterial blood vessels, and a fine network of small blood vessels formed the external vascularization. There were fewer arterial than venous branches connecting to the fine networks of small blood vessels. LPCVs were noted at E17, at the time the white matter emerged. They branched from the external vascularization, and perpendicularly penetrated the brain surface, traversing the cortical plate, and entering into the deep brain. At E17, arterial and venous blood vessels could be clearly distinguished in the external vascularization. At E20, the cortex and white matter contained specific arrangements of networks of fine blood vessels, as seen by GGS-AMG staining.Conclusion These findings show that the development of both the external and internalvascularization follows the development of thetelencephalon. In particular, the emergence ofthe cortical plate and white matter on E16 andE17 influence the development of both theinternal and the external vascularization. Thelaminal arrangement of blood vessels was notobserved corresponding to the respective laminalneuronal layers.
基金supported by the National Natural Science Foundation of China(Nos.52000043,and 51838005)the intro-duced innovative R&D team project under the“The Pearl River Talent Recruitment Program”of Guangdong Province(No.2019ZT08L387)+2 种基金the Guangdong Natural Science Foundation(No.2023A1515011509)the Science and Technology Research Project of Guangzhou(Nos.202201020177,202102020986 and 202102021044)the special fund from Key Laboratory of Drinking Water Science and Technology,Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences(No.20K01KLDWST).
文摘The effects of cast iron pipe corrosion onwater quality risk and microbial ecology in drinking water distribution systems(DWDSs)were investigated.It was found that trihalomethane(THMs)concentration and antibiotic resistance genes(ARGs)increased sharply in the old DWDSs.Under the same residual chlorine concentration conditions,the adenosine triphos-phate concentration in the effluent of old DWDSs(Eff-old)was significantly higher than that in the effluent of newDWDSs.Moreover,stronger bioflocculation ability andweaker hy-drophobicity coexisted in the extracellular polymeric substances of Eff-old,meanwhile,iron particles could be well inserted into the structure of the biofilms to enhance the mechanical strength and stability of the biofilms,hence enhancing the formation of THMs.Old DWDSs significantly influenced the microbial community of bulk water and triggered stronger mi-crobial antioxidant systems response,resulting in higher ARGs abundance.Corroded cast iron pipes induced a unique interaction system of biofilms,chlorine,and corrosion prod-ucts.Therefore,as the age of cast iron pipes increases,the fluctuation of water quality and microbial ecology should be paid more attention to maintain the safety of tap water.