Control of premature corrosion of magnesium(Mg)alloy bioresorbable stents(BRS)is frequently achieved by the addition of rare earth elements.However,limited long-term experience with these elements causes concerns for ...Control of premature corrosion of magnesium(Mg)alloy bioresorbable stents(BRS)is frequently achieved by the addition of rare earth elements.However,limited long-term experience with these elements causes concerns for clinical application and alternative methods of corrosion control are sought after.Herein,we report a“built-up”composite film consisting of a bottom layer of MgF2 conversion coating,a sandwich layer of a poly(1,3-trimethylene carbonate)(PTMC)and 3-aminopropyl triethoxysilane(APTES)co-spray coating(PA)and on top a layer of poly(lactic-co-glycolic acid)(PLGA)ultrasonic spray coating to decorate the rare earth element-free Mg-2Zn-1Mn(ZM21)BRS for tailoring both corrosion resistance and biological functions.The developed“built-up”composite film shows synergistic functionalities,allowing the compression and expansion of the coated ZM21 BRS on an angioplasty balloon without cracking or peeling.Of special importance is that the synergistic corrosion control effects of the“built-up”composite film allow for maintaining the mechanical integrity of stents for up to 3 months,where complete biodegradation and no foreign matter residue were observed about half a year after implantation in rabbit iliac arteries.Moreover,the functionalized ZM21 BRS accomplished re-endothelialization within one month.展开更多
In a recent study by the National Association of Corrosion Engineers (NACE), the global cost of corrosion was estimated to be US$ 2.5 trillion, equivalent to 3.4% of the global Gross Domestic Product [htto://imtaca...In a recent study by the National Association of Corrosion Engineers (NACE), the global cost of corrosion was estimated to be US$ 2.5 trillion, equivalent to 3.4% of the global Gross Domestic Product [htto://imtacact.nace.org/]. The prevention practices could save between study found that implementing the best corrosion 15%-35% of the cost of damage. One of the important measures to reduce the corrosion damage is using an appropriate material. Selection of a suitable material according to corrosivity of the service environment is essentially important in battle against industrial corrosion. Corrosion detection, damage characterization and surface analysis are critical approaches to fundamental understanding of the root cause and detailed mechanism of corrosion. They lay a foundation for prevention and mitigation of material corrosion in service environments. A technical breakthrough in these fields may result in significantly widened applications of traditional and emerging materials.展开更多
Globally,vast research interest is emerging towards the development of biodegradable orthopedic implants as it overcomes the toxicity exerted by non-degradable implants when fixed in the human body for a longer period...Globally,vast research interest is emerging towards the development of biodegradable orthopedic implants as it overcomes the toxicity exerted by non-degradable implants when fixed in the human body for a longer period.In this context,magnesium(Mg)plays a major role in the production of biodegradable implants owing to their characteristic degradation nature under the influence of body fluids.Also,Mg is one of the essential nutrients required to perform various metabolic activities by the human cells,and therefore,the degraded Mg products will be readily absorbed by the nearby tissues.Nevertheless,the higher corrosion rate in the biological environment is the primary downside of using Mg implants that liberate H2gas resulting in the formation of cavities.Further,in certain cases,Mg undergoes complete degradation before the healing of damaged bone tissue and cannot serve the purpose of providing mechanical support.So,many studies have been focused on the development of different strategies to improve the corrosion-resistant behavior of Mg according to the requirement.In this regard,the present review focused on the limitations of using pure Mg and Mg alloys for the fabrication of medical implants and how the calcium phosphate conversion coating alters the corrosive tendency through the formation of hydroxyapatite protective films for enhanced performance in medical implant applications.展开更多
Concentrated solar power(CSP)plants with thermal energy storage(TES)system are emerging as one kind of the most promising power plants in the future renewable energy system,since they can supply dispatchable and low-c...Concentrated solar power(CSP)plants with thermal energy storage(TES)system are emerging as one kind of the most promising power plants in the future renewable energy system,since they can supply dispatchable and low-cost electricity with abundant but intermittent solar energy.In order to significantly reduce the levelized cost of electricity(LCOE)of the present commercial CSP plants,the next generation CSP technology with higher process temperature and energy efficiency is being developed.The TES system in the next generation CSP plants works with new TES materials at higher temperatures(>565℃)compared to that with the commercial nitrate salt mixtures.This paper reviews recent progressin research and development of the next generation CSP and TES technology.Emphasis is given on theadvanced'TES technology based on molten chloride salt mixtures such as MgCl_(2)/NaCl/KCl which hassimilar thermo-physical properties as the commercial nitrate salt mixtures,higher thermal stability(>800℃),and lower costs(<0.35USD·kg^(-1)).Recent progress in the selection/optimization of chloridesalts,determination of molten chloride salt properties,and corrosion control of construction materials(eg.,alloys)in molten chlorides is reviewed.展开更多
基金This work was supported by the National Natural Science Foundation of China(Project 32171326,82072072,81330031)the INTERNATIONAL COOPERATION Project by Science and Technology Department of Sichuan Province(2021YslnFH0056)the High-level Talents Research and Development Program of Affiliated Dongguan Hospital(K202102).
文摘Control of premature corrosion of magnesium(Mg)alloy bioresorbable stents(BRS)is frequently achieved by the addition of rare earth elements.However,limited long-term experience with these elements causes concerns for clinical application and alternative methods of corrosion control are sought after.Herein,we report a“built-up”composite film consisting of a bottom layer of MgF2 conversion coating,a sandwich layer of a poly(1,3-trimethylene carbonate)(PTMC)and 3-aminopropyl triethoxysilane(APTES)co-spray coating(PA)and on top a layer of poly(lactic-co-glycolic acid)(PLGA)ultrasonic spray coating to decorate the rare earth element-free Mg-2Zn-1Mn(ZM21)BRS for tailoring both corrosion resistance and biological functions.The developed“built-up”composite film shows synergistic functionalities,allowing the compression and expansion of the coated ZM21 BRS on an angioplasty balloon without cracking or peeling.Of special importance is that the synergistic corrosion control effects of the“built-up”composite film allow for maintaining the mechanical integrity of stents for up to 3 months,where complete biodegradation and no foreign matter residue were observed about half a year after implantation in rabbit iliac arteries.Moreover,the functionalized ZM21 BRS accomplished re-endothelialization within one month.
文摘In a recent study by the National Association of Corrosion Engineers (NACE), the global cost of corrosion was estimated to be US$ 2.5 trillion, equivalent to 3.4% of the global Gross Domestic Product [htto://imtacact.nace.org/]. The prevention practices could save between study found that implementing the best corrosion 15%-35% of the cost of damage. One of the important measures to reduce the corrosion damage is using an appropriate material. Selection of a suitable material according to corrosivity of the service environment is essentially important in battle against industrial corrosion. Corrosion detection, damage characterization and surface analysis are critical approaches to fundamental understanding of the root cause and detailed mechanism of corrosion. They lay a foundation for prevention and mitigation of material corrosion in service environments. A technical breakthrough in these fields may result in significantly widened applications of traditional and emerging materials.
文摘Globally,vast research interest is emerging towards the development of biodegradable orthopedic implants as it overcomes the toxicity exerted by non-degradable implants when fixed in the human body for a longer period.In this context,magnesium(Mg)plays a major role in the production of biodegradable implants owing to their characteristic degradation nature under the influence of body fluids.Also,Mg is one of the essential nutrients required to perform various metabolic activities by the human cells,and therefore,the degraded Mg products will be readily absorbed by the nearby tissues.Nevertheless,the higher corrosion rate in the biological environment is the primary downside of using Mg implants that liberate H2gas resulting in the formation of cavities.Further,in certain cases,Mg undergoes complete degradation before the healing of damaged bone tissue and cannot serve the purpose of providing mechanical support.So,many studies have been focused on the development of different strategies to improve the corrosion-resistant behavior of Mg according to the requirement.In this regard,the present review focused on the limitations of using pure Mg and Mg alloys for the fabrication of medical implants and how the calcium phosphate conversion coating alters the corrosive tendency through the formation of hydroxyapatite protective films for enhanced performance in medical implant applications.
文摘Concentrated solar power(CSP)plants with thermal energy storage(TES)system are emerging as one kind of the most promising power plants in the future renewable energy system,since they can supply dispatchable and low-cost electricity with abundant but intermittent solar energy.In order to significantly reduce the levelized cost of electricity(LCOE)of the present commercial CSP plants,the next generation CSP technology with higher process temperature and energy efficiency is being developed.The TES system in the next generation CSP plants works with new TES materials at higher temperatures(>565℃)compared to that with the commercial nitrate salt mixtures.This paper reviews recent progressin research and development of the next generation CSP and TES technology.Emphasis is given on theadvanced'TES technology based on molten chloride salt mixtures such as MgCl_(2)/NaCl/KCl which hassimilar thermo-physical properties as the commercial nitrate salt mixtures,higher thermal stability(>800℃),and lower costs(<0.35USD·kg^(-1)).Recent progress in the selection/optimization of chloridesalts,determination of molten chloride salt properties,and corrosion control of construction materials(eg.,alloys)in molten chlorides is reviewed.