Experiments were conducted to study the general room temperature corrosion characteristics of heat-treated and non-heat-treated Al-Li alloys with different Li compositions. Corrosion rate was measured using both the p...Experiments were conducted to study the general room temperature corrosion characteristics of heat-treated and non-heat-treated Al-Li alloys with different Li compositions. Corrosion rate was measured using both the polarisation method and the weight-loss method. It was observed that the samples with higher Li content had lower corrosion resistance than those with lower Li content. Moreover, for all the specimens tested, it was fOund that heat treatment at 180℃ for 2 h (for the purpose of precipitation hardening) severely reduced the corrosion resistance,whereas heat treatment at 180℃ for 6 h significantly increased the corrosion resistance.展开更多
In the past two years,significant progresses have been achieved in high-performance cast and wrought magnesium and magnesium alloys,magnesium-based composites,advanced cast technologies,advanced processing technologie...In the past two years,significant progresses have been achieved in high-performance cast and wrought magnesium and magnesium alloys,magnesium-based composites,advanced cast technologies,advanced processing technologies,and functional magnesium materials,such as Mg ion batteries,hydrogen storage Mg materials,bio-magnesium alloys,etc.Great contributions to the development of new magnesium alloys and their processing technologies have been made by Chongqing University,Shanghai Jiaotong University,Chinese Academy of Sciences,Helmholtz Zentrum Geesthacht,Queensland University,Brunel University,etc.This review paper is aimed to summarize the latest important advances in cast magnesium alloys,wrought magnesium alloys and functional magnesium materials worldwide in 2018–2019,including both the development of new materials and the innovation of their processing technologies.Based on the issues and challenges identified here,some future research directions are suggested,including further development of high-performance magnesium alloys having high strength and superior plasticity together with high corrosion resistance and low cost,and fundamental research on the phase diagram,diffusion,precipitation,etc.,as well as the development of advanced welding and joining technology.展开更多
By using scanning electron microscopy, energy-dispersive spectrometry, X-ray diffraction, strength and hardness measurements, the microstructure, precipitation, mechanical properties, and corrosion resis- tance have b...By using scanning electron microscopy, energy-dispersive spectrometry, X-ray diffraction, strength and hardness measurements, the microstructure, precipitation, mechanical properties, and corrosion resis- tance have been investigated for two super ferritic stainless steels, 26Cr-3.SMo-2Ni and 29Cr-3.5Mo- 2Ni, with the aim to consider the effect of Cr content. The results showed that with the addition of Cr content, the recrystallization temperature was increased; the precipitation of Laves and Sigma (o) phases was promoted and the mechanical properties of super ferritic stainless steel were modified. Further- more, the pitting corrosion resistance and corrosion resistance to H2SO4 of the two super ferritic stainless steels were improved. In addition, suitable annealing processing is a key factor to maintain integrated performance by optimizing microstructure and removing detrimental precipitation phases.展开更多
文摘Experiments were conducted to study the general room temperature corrosion characteristics of heat-treated and non-heat-treated Al-Li alloys with different Li compositions. Corrosion rate was measured using both the polarisation method and the weight-loss method. It was observed that the samples with higher Li content had lower corrosion resistance than those with lower Li content. Moreover, for all the specimens tested, it was fOund that heat treatment at 180℃ for 2 h (for the purpose of precipitation hardening) severely reduced the corrosion resistance,whereas heat treatment at 180℃ for 6 h significantly increased the corrosion resistance.
基金The content in this review is financially supported by the National Key Research and Development Program of China(No.2016YFB0301100,2017YFF0209100)the National Science Foundation for Scientists of China(No.51531002,51474043,51701027,51971042,51901028)the Chongqing Academician Special Fund(cstc2018jcyj-yszxX0007,cstc2019yszxjcyjX0004).
文摘In the past two years,significant progresses have been achieved in high-performance cast and wrought magnesium and magnesium alloys,magnesium-based composites,advanced cast technologies,advanced processing technologies,and functional magnesium materials,such as Mg ion batteries,hydrogen storage Mg materials,bio-magnesium alloys,etc.Great contributions to the development of new magnesium alloys and their processing technologies have been made by Chongqing University,Shanghai Jiaotong University,Chinese Academy of Sciences,Helmholtz Zentrum Geesthacht,Queensland University,Brunel University,etc.This review paper is aimed to summarize the latest important advances in cast magnesium alloys,wrought magnesium alloys and functional magnesium materials worldwide in 2018–2019,including both the development of new materials and the innovation of their processing technologies.Based on the issues and challenges identified here,some future research directions are suggested,including further development of high-performance magnesium alloys having high strength and superior plasticity together with high corrosion resistance and low cost,and fundamental research on the phase diagram,diffusion,precipitation,etc.,as well as the development of advanced welding and joining technology.
文摘By using scanning electron microscopy, energy-dispersive spectrometry, X-ray diffraction, strength and hardness measurements, the microstructure, precipitation, mechanical properties, and corrosion resis- tance have been investigated for two super ferritic stainless steels, 26Cr-3.SMo-2Ni and 29Cr-3.5Mo- 2Ni, with the aim to consider the effect of Cr content. The results showed that with the addition of Cr content, the recrystallization temperature was increased; the precipitation of Laves and Sigma (o) phases was promoted and the mechanical properties of super ferritic stainless steel were modified. Further- more, the pitting corrosion resistance and corrosion resistance to H2SO4 of the two super ferritic stainless steels were improved. In addition, suitable annealing processing is a key factor to maintain integrated performance by optimizing microstructure and removing detrimental precipitation phases.