A finite domain time difference (FDTD) and second-derivative combined method is proposed for the evaluation of phase center in the Fresnel region of complex structure millimeter antennas. This method adopts FDTD's ...A finite domain time difference (FDTD) and second-derivative combined method is proposed for the evaluation of phase center in the Fresnel region of complex structure millimeter antennas. This method adopts FDTD's near to far field transformation to obtain the fields in Fresnel region and then applies the second-derivative method to calculate the phase center. The adoption of FDTD efficiently overcomes the difficulties arising from the existing calculation methods' requirements for the radiation analytical formula of some complex antennas, which makes the existing second-derivative method more applicable in engineering. Also, FDTD increases the precision owing to the superposition field calculation from its extrapolation. The correctness of this proposed method is certified with typical examples and the phase center in the Fresnel region of a microwave radiometry calibration corrugate horn antenna is evaluated with the key features.展开更多
The compact ortho-mode transducer (OMT) and compact conical corrugated horn(CCCH) are used as feeding system of the deployable dual polarizing antenna in this paper.A new stricture of double-septum in main wave guide ...The compact ortho-mode transducer (OMT) and compact conical corrugated horn(CCCH) are used as feeding system of the deployable dual polarizing antenna in this paper.A new stricture of double-septum in main wave guide OMT is proposed. The finite difference method in time domain (FDTD) in combination with genetic algorithms(GAs) is used to analysis and optimize this new OMT. The experiment results show that the voltage standing wave ratio (VSWR) of this OMT and feeding system is less than 1.17 in bandwidth; the isolation between the ortho-mode ports is less than -40dB; the cross-polar level of the feed can reach -35dB and the length of the main waveguide can be reduced 50% at least.展开更多
基金the National Key Laboratory of Metrology and Calibration Technology
文摘A finite domain time difference (FDTD) and second-derivative combined method is proposed for the evaluation of phase center in the Fresnel region of complex structure millimeter antennas. This method adopts FDTD's near to far field transformation to obtain the fields in Fresnel region and then applies the second-derivative method to calculate the phase center. The adoption of FDTD efficiently overcomes the difficulties arising from the existing calculation methods' requirements for the radiation analytical formula of some complex antennas, which makes the existing second-derivative method more applicable in engineering. Also, FDTD increases the precision owing to the superposition field calculation from its extrapolation. The correctness of this proposed method is certified with typical examples and the phase center in the Fresnel region of a microwave radiometry calibration corrugate horn antenna is evaluated with the key features.
基金Sponsored by the 873 Plan by Ministry of Science and Technology of China ( 2006AA12Z1137)CSSAR Innovation Project ( 2007)
文摘The compact ortho-mode transducer (OMT) and compact conical corrugated horn(CCCH) are used as feeding system of the deployable dual polarizing antenna in this paper.A new stricture of double-septum in main wave guide OMT is proposed. The finite difference method in time domain (FDTD) in combination with genetic algorithms(GAs) is used to analysis and optimize this new OMT. The experiment results show that the voltage standing wave ratio (VSWR) of this OMT and feeding system is less than 1.17 in bandwidth; the isolation between the ortho-mode ports is less than -40dB; the cross-polar level of the feed can reach -35dB and the length of the main waveguide can be reduced 50% at least.