The safety valve is an important component to ensure the safe operation of lithium-ion batteries(LIBs).However,the effect of safety valve type on the thermal runaway(TR)and gas venting behavior of LIBs,as well as the ...The safety valve is an important component to ensure the safe operation of lithium-ion batteries(LIBs).However,the effect of safety valve type on the thermal runaway(TR)and gas venting behavior of LIBs,as well as the TR hazard severity of LIBs,are not known.In this paper,the TR and gas venting behavior of three 100 A h lithium iron phosphate(LFP)batteries with different safety valves are investigated under overheating.Compared to previous studies,the main contribution of this work is in studying and evaluating the effect of gas venting behavior and TR hazard severity of LFP batteries with three safety valve types.Two significant results are obtained:(Ⅰ)the safety valve type dominates over gas venting pressure of battery during safety venting,the maximum gas venting pressure of LFP batteries with a round safety valve is 3320 Pa,which is one order of magnitude higher than other batteries with oval or cavity safety valve;(Ⅱ)the LFP battery with oval safety valve has the lowest TR hazard as shown by the TR hazard assessment model based on gray-fuzzy analytic hierarchy process.This study reveals the effect of safety valve type on TR and gas venting,providing a clear direction for the safety valve design.展开更多
Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migra...Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates.展开更多
The molecular mechanism underlying Corydalis Yanhusuo’s therapeutic potential in prostate cancer(PCa)treatment was elucidated using network pharmacology and molecular docking.Nineteen active ingredients,399 drug targ...The molecular mechanism underlying Corydalis Yanhusuo’s therapeutic potential in prostate cancer(PCa)treatment was elucidated using network pharmacology and molecular docking.Nineteen active ingredients,399 drug targets,1790 disease targets and 143 intersection targets were identified.Ten core targets were screened from the protein-protein interaction network.Enrichment analysis revealed 133 GO terms and 114 KEGG pathways.Corydalis Yanhusuo may potentially treat prostate cancer through pathways such as the Rap1 signaling pathway,phospholipase D signaling pathway,Ras signaling pathway,VEGF signaling pathway and JAK-STAT signaling pathway.Significant differences in expression were observed for EGFR,PDGFRA,PIK3CA,PIK3CD,PIK3CG and PIK3R1.Molecular docking and dynamics simulation analysis showed low binding energy between active components and the six core genes of Corydalis Yanhusuo,indicating a favorable docking effect.This study shows that Corydalis Yanhusuo exhibits promise in prostate cancer treatment through a synergistic“multi-component-multi-target-multi-pathway”effect.展开更多
Corydalis bungeana Turcz.(CB)is a medicinal herb with significant medicinal value in traditional Chinese medicine.This paper reviews the progress of research on CB’s botany,quality control,phytochemistry,pharmacology...Corydalis bungeana Turcz.(CB)is a medicinal herb with significant medicinal value in traditional Chinese medicine.This paper reviews the progress of research on CB’s botany,quality control,phytochemistry,pharmacology and toxicity.The plant’s information was gathered from scientific databases such as PubMed,GeenMedical,Springer Link(https://link.springer.com),Chinese National Knowledge Infrastructure,Pharmacopoeia and Flora.Currently,137 phytochemicals have been identified and isolated from CB,including alkaloids,flavonoids,amino acids,terpenoids,coumarins and organic acids.In addition,many phytochemicals reported various antiinflammatory,antibacterial,antiviral,antitumor,analgesic,hepatoprotective,immunomodulatory,neuromodulatory,and lipid reduction activities.However,the study of its toxicity is still at the preliminary exploration stage and needs further intensive exploration.Herein,we provide an in-depth investigation of the progress of CB to elucidate the underlying mechanisms of activity of CB extracts and its major components,deliver valuable resources and information for further research and rational drug use,and explore the potential research directions and prospects of CB.展开更多
基金supported by the National Key R&D Program of China(No.2021YFB2402001)the Postgraduate Innovation and Entrepreneurship Practice Project of Anhui Province(No.2022cxcysj013)+2 种基金the China Postdoctoral Science Foundation(No.2022T150615)the Fundamental Research Funds for the Central Universities(No.WK5290000002)supported by Youth Innovation Promotion Association CAS(No.Y201768)。
文摘The safety valve is an important component to ensure the safe operation of lithium-ion batteries(LIBs).However,the effect of safety valve type on the thermal runaway(TR)and gas venting behavior of LIBs,as well as the TR hazard severity of LIBs,are not known.In this paper,the TR and gas venting behavior of three 100 A h lithium iron phosphate(LFP)batteries with different safety valves are investigated under overheating.Compared to previous studies,the main contribution of this work is in studying and evaluating the effect of gas venting behavior and TR hazard severity of LFP batteries with three safety valve types.Two significant results are obtained:(Ⅰ)the safety valve type dominates over gas venting pressure of battery during safety venting,the maximum gas venting pressure of LFP batteries with a round safety valve is 3320 Pa,which is one order of magnitude higher than other batteries with oval or cavity safety valve;(Ⅱ)the LFP battery with oval safety valve has the lowest TR hazard as shown by the TR hazard assessment model based on gray-fuzzy analytic hierarchy process.This study reveals the effect of safety valve type on TR and gas venting,providing a clear direction for the safety valve design.
基金supported by the National Natural Science Foundation of China(42376221,42276083)Director Research Fund Project of Guangzhou Marine Geological Survey(2023GMGSJZJJ00030)+2 种基金National Key Research and Development Program of China(2021YFC2800901)Guangdong Major Project of Basic and Applied Basic Research(2020B030103003)the project of the China Geological Survey(DD20230064).
文摘Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates.
基金supported by local special projects in major health of Hubei Provincial Science and Technology Department(2022BCE054)key scientific research projects of Hubei Polytechnic University(23xjz08A)Hubei Polytechnic University·Huangshi Daye Lake high-tech Zone University Science Park Joint Open Fund Project(23xjz04AK).
文摘The molecular mechanism underlying Corydalis Yanhusuo’s therapeutic potential in prostate cancer(PCa)treatment was elucidated using network pharmacology and molecular docking.Nineteen active ingredients,399 drug targets,1790 disease targets and 143 intersection targets were identified.Ten core targets were screened from the protein-protein interaction network.Enrichment analysis revealed 133 GO terms and 114 KEGG pathways.Corydalis Yanhusuo may potentially treat prostate cancer through pathways such as the Rap1 signaling pathway,phospholipase D signaling pathway,Ras signaling pathway,VEGF signaling pathway and JAK-STAT signaling pathway.Significant differences in expression were observed for EGFR,PDGFRA,PIK3CA,PIK3CD,PIK3CG and PIK3R1.Molecular docking and dynamics simulation analysis showed low binding energy between active components and the six core genes of Corydalis Yanhusuo,indicating a favorable docking effect.This study shows that Corydalis Yanhusuo exhibits promise in prostate cancer treatment through a synergistic“multi-component-multi-target-multi-pathway”effect.
基金This research was funded by the National Natural Science Foundation of China(82260773)National Key R&D Program:Intergovernmental Cooperation in International Science and Technology Innovation(2022YFE0119300)+1 种基金Central Government Guided Local Scientific and Technological Development Project(2021ZY0015)Science and Technology Young Talents Development Project of Inner Mongolia Autonomous Region(NJYT22048).
文摘Corydalis bungeana Turcz.(CB)is a medicinal herb with significant medicinal value in traditional Chinese medicine.This paper reviews the progress of research on CB’s botany,quality control,phytochemistry,pharmacology and toxicity.The plant’s information was gathered from scientific databases such as PubMed,GeenMedical,Springer Link(https://link.springer.com),Chinese National Knowledge Infrastructure,Pharmacopoeia and Flora.Currently,137 phytochemicals have been identified and isolated from CB,including alkaloids,flavonoids,amino acids,terpenoids,coumarins and organic acids.In addition,many phytochemicals reported various antiinflammatory,antibacterial,antiviral,antitumor,analgesic,hepatoprotective,immunomodulatory,neuromodulatory,and lipid reduction activities.However,the study of its toxicity is still at the preliminary exploration stage and needs further intensive exploration.Herein,we provide an in-depth investigation of the progress of CB to elucidate the underlying mechanisms of activity of CB extracts and its major components,deliver valuable resources and information for further research and rational drug use,and explore the potential research directions and prospects of CB.