期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Coseismic deformation and fault slip distribution of the 2023 M_(W)7.8 and M_(W)7.6 earthquakes in Türkiye 被引量:1
1
作者 Weikang Li Lijiang Zhao +4 位作者 Kai Tan Xiaofei Lu Caihong Zhang Chengtao Li Shuaishuai Han 《Earthquake Science》 2024年第3期263-276,共14页
On February 6,2023,a devastating earthquake with a moment magnitude of M_(W)7.8 struck the town of Pazarcik in south-central Türkiye,followed by another powerful earthquake with a moment magnitude of M_(W)7.6 tha... On February 6,2023,a devastating earthquake with a moment magnitude of M_(W)7.8 struck the town of Pazarcik in south-central Türkiye,followed by another powerful earthquake with a moment magnitude of M_(W)7.6 that struck the nearby city of Elbistan 9 h later.To study the characteristics of surface deformation caused by this event and the influence of fault rupture,this study calculated the static coseismic deformation of 56 stations and dynamic displacement waveforms of 15 stations using data from the Turkish national fixed global navigation satellite system(GNSS)network.A maximum static coseismic displacement of 0.38 m for the M_(W)7.8 Kahramanmaras earthquake was observed at station ANTE,36 km from the epicenter,and a maximum dynamic coseismic displacement of 4.4 m for the M_(W)7.6 Elbistan earthquake was observed at station EKZ1,5 km from the epicenter.The rupture-slip distributions of the two earthquakes were inverted using GNSS coseismic deformation as a constraint.The results showed that the Kahramanmaras earthquake rupture segment was distinct and exposed on the ground,resulting in significant rupture slip along the Amanos and Pazarcik fault segments of the East Anatolian Fault.The maximum slip in the Pazarcik fault segment was 10.7 m,and rupture occurred at depths of 0–15 km.In the Cardak fault region,the Elbistan earthquake caused significant ruptures at depths of 0–12 km,with the largest amount of slip reaching 11.6 m.The Coulomb stress change caused by the Kahramanmaras earthquake rupture along the Cardak fault segment was approximately 2 bars,and the area of increased Coulomb stress corresponded to the subsequent rupture region of the M_(W)7.6 earthquake.Thus,it is likely that the M_(W)7.8 earthquake triggered or promoted the M_(W)7.6 earthquake.Based on the cumulative stress impact of the M_(W)7.8 and M_(W)7.6 events,the southwestern segment of the East Anatolian Fault,specifically the Amanos fault segment,experienced a Coulomb rupture stress change exceeding 2 bars,warranting further attention to assess its future seismic hazard risk. 展开更多
关键词 2023 Türkiye earthquake GNSS observation coseismic deformation field slip distribution
下载PDF
The Surface Rupture Zone and Coseismic Deformation Produced by the Yutian Ms7.3 Earthquake of 21 March 2008,Xinjiang 被引量:2
2
作者 SHAN Xinjian QU Chunyan +5 位作者 WANG Chisheng ZHANG Guifang ZHANG Guohong SONG Xiaogang GUO Liming LIU Yunhua 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第1期256-265,共10页
On 21 March 2008, a Ms7.3 earthquake occurred at Quickbird, Yutian County, Xinjiang. We attempt to reveal the features of the causative fault of this shock and its coseismic deformation field. Our work is based on ana... On 21 March 2008, a Ms7.3 earthquake occurred at Quickbird, Yutian County, Xinjiang. We attempt to reveal the features of the causative fault of this shock and its coseismic deformation field. Our work is based on analysis and interpretation to high-resolution satellite images as well as differential interferometric synthetic aperture radar (D-InSAR) data from the satellite Envisat SAR, coupled with seismicity, focal mechanism solutions and active tectonics in this region. The result shows that the 40 km-long, nearly NS trending surface rupture zone by this event lies on a range-front alluvial platform in Qira County. It is characterized by distinct linear traces and simple structure with 1-3-m-wide individual seams and maximum 6.5 m width of a collapse fracture. Along the rupture zone many secondary fractures and fault-bounded blocks are seen, exhibiting remarkable extension. The eoseismic deformation affected a large area 100~100 km2. D-InSAR analysis indicates that the interferometric deformation field is dominated by extensional faulting with a small strike-slip component. Along the causative fault, the western wall fell down and the eastern wall, that is the active unit, rose up, both with westerly vergence. Because of the big deformation gradients near the seismogenic fault, no interference fringes are seen on images, and what can be determined is a vertical displacement 70 cm or more between the two fault walls. According to the epicenter and differential occurrence times from the National Earthquake Information Center, China Earthquake Network Center, Harvard and USGS, it is suggested that the seismic fault ruptured from north to south. 展开更多
关键词 Yuntian Earthquake high resolution image D-INSAR surface rupture zone coseismic deformation field
下载PDF
Crustal deformation on the Chinese mainland during 1998—2004 based on GPS data 被引量:64
3
作者 Zhao Bin Huang Yong +3 位作者 Zhang Caihong Wang Wei Tan Kai Du Rinlin 《Geodesy and Geodynamics》 2015年第1期7-15,共9页
This study focuses on resolving moderate amounts of crustal motion at the continental scale based on a large volume of global positioning system(GPS) data during 1998e2014. A state-of-the-art GPS processing strategy... This study focuses on resolving moderate amounts of crustal motion at the continental scale based on a large volume of global positioning system(GPS) data during 1998e2014. A state-of-the-art GPS processing strategy was used to resolve position time series and velocities from carrier beat phases for all available data. Position time series were closely analyzed to estimate linear constant, coseismic displacements, postseismic motions, and other parameters. We present coseismic offsets inferred from the GPS data for the 2010 Yushu and 2014 Yutian earthquakes, and also illustrate transient postseismic motions following the 2001 Kokoxili, 2008 Wenchuan, and 2011 Tohoku-Oki earthquakes. Since not all GPS position time series dominated by postseismic motions can be modeled and corrected reasonably, we present contemporary horizontal velocities from 2009 to 2014 for campaign stations and from 1998 to 2014 for continuous stations, irrespective of postseismic deformations. Our study concludes that we need to accumulate observations over a greater duration and apply accurate postseismic modeling to correct for transient displacement in order to resolve reasonable interseismic velocity. 展开更多
关键词 Velocity field coseismic deformation Postseismic deformation Error analysis Chinese mainland
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部