期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
On a Quantum Gravity Fractal Spacetime Equation: QRG ≃HD + FG and Its Application to Dark Energy—Accelerated Cosmic Expansion 被引量:1
1
作者 Mohamed S. El Naschie 《Journal of Modern Physics》 2016年第8期729-736,共8页
The paper suggests that quantum relativistic gravity (QRG) is basically a higher dimensionality (HD) simulating relativity and non-classical effects plus a fractal Cantorian spacetime geometry (FG) simulating quantum ... The paper suggests that quantum relativistic gravity (QRG) is basically a higher dimensionality (HD) simulating relativity and non-classical effects plus a fractal Cantorian spacetime geometry (FG) simulating quantum mechanics. This more than just a conceptual equation is illustrated by integer approximation and an exact solution of the dark energy density behind cosmic expansion. 展开更多
关键词 Fractal Cantorian Spacetime Quantum Relativity Superstrings Transfinite Set Theory Extra Spacetime Dimensions Quantum Physics Dark Energy Accelerated cosmic expansion cosmic Topology Hyperbolic Geometry E-Infinity Theory Post Modernistic Physics
下载PDF
From Witten’s 462 Supercharges of 5-D Branes in Eleven Dimensions to the 95.5 Percent Cosmic Dark Energy Density behind the Accelerated Expansion of the Universe 被引量:1
2
作者 Mohamed S. El Naschie 《Journal of Quantum Information Science》 2016年第2期57-61,共5页
The measured 95.5% dark energy density of the cosmos presumed to be behind the observed accelerated cosmic expansion is determined theoretically based upon Witten’s five branes in eleven dimensions theory. We show th... The measured 95.5% dark energy density of the cosmos presumed to be behind the observed accelerated cosmic expansion is determined theoretically based upon Witten’s five branes in eleven dimensions theory. We show that the said dark energy density is easily found from the ratio of the 462 states of the five dimensional Branes to the total number of states, namely 528 minus the 44 degrees of freedom of the vacuum, i.e. , almost exactly as found in WMAP and Type 1a supernova measurements. 展开更多
关键词 Number Theory Witten Branes Dark Energy Superstrings cosmic expansion Type 1a Supernova E-INFINITY Exceptional Lie Symmetry Groups
下载PDF
Addendum: Quark Confinement, New Cosmic Expansion and General Yang-Mills Symmetry (J. P. Hsu, Chin. Phys. C, 41(1): 015101 (2017))
3
《Chinese Physics C》 SCIE CAS CSCD 2017年第12期162-162,共1页
The force between a gigantic sphere with baryon galaxies exerted on an idealized point-like supernova is given by Fcbf = F1 in Eq. (40) of the original paper. We can generalized the point-like supernova to a sphere ... The force between a gigantic sphere with baryon galaxies exerted on an idealized point-like supernova is given by Fcbf = F1 in Eq. (40) of the original paper. We can generalized the point-like supernova to a sphere with a radius Rs and a constant mass density Ps. 展开更多
关键词 ADDENDUM Quark Confinement New cosmic expansion
原文传递
The Observable Universe in a Simplified Cosmic Dynamic Model 被引量:1
4
作者 Xiaoyun Li La Ba Sakya Genzon +2 位作者 Suoang Longzhou Youping Dai Yangsheng Xu 《Journal of Applied Mathematics and Physics》 2021年第6期1322-1328,共7页
This paper introduces a cosmic expansion model with constant speed of cosmic spatial expansion via derivation and simulations, where the speed of cosmic spatial expansion equals the speed of light <em>c</em&g... This paper introduces a cosmic expansion model with constant speed of cosmic spatial expansion via derivation and simulations, where the speed of cosmic spatial expansion equals the speed of light <em>c</em>. Simulation results show that the earliest observable universe time is <em>t</em> = 5.084 Gyrs where the current universe time <em>T</em> = 13.82 Gyrs, and the furthest observable distance at the earliest observable universe time <em>t</em> is <em>S</em> = 0.632<em>R</em>, where <em>R</em> is the cosmic radius at current universe time <em>T</em>. The above constant cosmic expansion model does not consider the inflation period in the early universe according to the Big Bang model, nor does it considered the cosmic acceleration in recent universe time. However, this simplified cosmic expansion model could be a benchmark that will be helpful to understand the cosmic expansion and the observable universe. Based on the derivation and simulation of the constant cosmic expansion model, the threshold of observable universe for the accelerated cosmic expansion model can also be calculated similarly, as far as the speed of cosmic spatial expansion at any universe time t can be provided. 展开更多
关键词 Observable Universe THRESHOLD SIMULATION cosmic expansion Model
下载PDF
Kähler Dark Matter, Dark Energy Cosmic Density and Their Coupling 被引量:2
5
作者 Mohamed S. El Naschie 《Journal of Modern Physics》 2016年第14期1953-1962,共11页
We utilize homology and co-homology of a K3-K&#228;hler manifold as a model for spacetime to derive the cosmic energy density of our universe and subdivide it into its three fundamental constituents, namely: 1) or... We utilize homology and co-homology of a K3-K&#228;hler manifold as a model for spacetime to derive the cosmic energy density of our universe and subdivide it into its three fundamental constituents, namely: 1) ordinary energy;2) pure dark energy and 3) dark matter. In addition, the fundamental coupling of dark matter to pure dark energy is analyzed in detail for the first time. Finally, the so-obtained results are shown to be in astounding agreement with all previous theoretical analysis as well as with actual accurate cosmic measurements. 展开更多
关键词 Kähler Topology Dark Matter E-INFINITY Super Strings Golden Mean Computer Kerr Black Hole Geometry Accelerated cosmic expansion Fractal Cantorian Spacetime
下载PDF
The Cosmic Radius of Observable Universe
6
作者 Xiaoyun Li Suoang Longzhou La Ba Sakya Genzon 《Journal of High Energy Physics, Gravitation and Cosmology》 2022年第1期1-13,共13页
This paper introduces three cosmic expansion models with constant, decelerating and accelerating speed of expansion respectively. Then characters of these cosmic expansion models are compared. Based on these cosmic ex... This paper introduces three cosmic expansion models with constant, decelerating and accelerating speed of expansion respectively. Then characters of these cosmic expansion models are compared. Based on these cosmic expansion models, the thresholds of observable universe are calculated via simulations, where the earliest observable cosmic radius <i>R</i>(<i>t<sub>earliest</sub></i>) is always 0.368<i>R</i> (<i>R</i> is cosmic radius at current universe time) for any cosmic expansion models. 展开更多
关键词 Observable Universe THRESHOLD SIMULATION cosmic expansion Model
下载PDF
Cantorian-Fractal Kinetic Energy and Potential Energy as the Ordinary and Dark Energy Density of the Cosmos Respectively 被引量:4
7
作者 Mohamed S. El Naschie 《Natural Science》 2016年第12期511-540,共30页
In a one-dimension Mauldin-Williams Random Cantor Set Universe, the Sigalotti topological speed of light is  where . It follows then that the corresponding topological acceleration must be a golden mean downscali... In a one-dimension Mauldin-Williams Random Cantor Set Universe, the Sigalotti topological speed of light is  where . It follows then that the corresponding topological acceleration must be a golden mean downscaling of c namely . Since the maximal height in the one-dimensional universe must be where is the unit interval length and note that the topological mass (m) and topological dimension (D) where m = D = 5 are that of the largest unit sphere volume, we can conclude that the potential energy of classical mechanics translates to . Remembering that the kinetic energy is , then by the same logic we see that  when m = 5 is replaced by for reasons which are explained in the main body of the present work. Adding both expressions together, we find Einstein’s maximal energy . As a general conclusion, we note that within high energy cosmology, the sharp distinction between potential energy and kinetic energy of classical mechanics is blurred on the cosmic scale. Apart of being an original contribution, the article presents an almost complete bibliography on the Cantorian-fractal spacetime theory. 展开更多
关键词 Potential Dark Energy Kinetic Ordinary Energy Motion as Illusion Zenonparadoxa E-Infinity Theory Noncommutative Geometry Topological Acceleration Cantorian Universe Accelerated cosmic expansion
下载PDF
On a Fractal Version of Witten’s M-Theory 被引量:12
8
作者 Mohamed S. El Naschie 《International Journal of Astronomy and Astrophysics》 2016年第2期135-144,共10页
Starting from Witten’s eleven dimensional M-theory, the present work develops in an analogous way a corresponding dimensional fractal version where . Subsequently, the new fractal formalism is utilized to determine t... Starting from Witten’s eleven dimensional M-theory, the present work develops in an analogous way a corresponding dimensional fractal version where . Subsequently, the new fractal formalism is utilized to determine the measured ordinary energy density of the cosmos which turns out to be intimately linked to the new theory’s fractal dimension via non-integer irrational Lorentzian-like factor: where is Hardy’s probability of quantum entanglement. Consequently, the energy density is found from a limiting classical kinetic energy to be Here, is ‘tHooft’s renormalon of dimensional regularization. The immediate logical, mathematical and physical implication of this result is that the dark energy density of the cosmos must be in astounding agreement with cosmic measurements and observations. 展开更多
关键词 M-THEORY E-Infinity Theory Hardy’s Quantum Entanglement Transfinite Turing Computer Dark Energy Accelerated cosmic expansion Noncommutative Geometry Superstring Theory Scale Relativity Cantorian-Fractal Spacetime Witten’s Theory ‘tHooft Renormalon Pure Gravity Penrose Tiling
下载PDF
Negative Norms in Quantized Strings as Dark Energy Density of the Cosmos 被引量:1
9
作者 Mohamed S. El Naschie 《World Journal of Condensed Matter Physics》 CAS 2016年第2期63-67,共5页
The present short paper is concerned with accurate explanation as well as quantification of the so called missing dark energy of the cosmos. It was always one of the main objectives of any successful general theory of... The present short paper is concerned with accurate explanation as well as quantification of the so called missing dark energy of the cosmos. It was always one of the main objectives of any successful general theory of high energy particle physics and quantum cosmology to keep non-physical negative norms, the so called ghosts completely out of that theory. The present work takes the completely contrary view by admitting these supposedly spurious states as part of the physical Hilbert space. It is further shown that rethinking the ghost free condition with the two critical spacetime dimensions D<sub>1</sub> = 26 and D<sub>2</sub> = 25 together with the corresponding intercept a<sub>1</sub> = 1 and a<sub>2</sub> ≤ 1 respectively and in addition imposing, as in Gross et al. heterotic superstrings, an overall 496 dimensional exceptional Lie symmetry group, then one will discover that there are two distinct types of energy. The first is positive norm ordinary energy connected to the zero set quantum particles which is very close to the measured ordinary energy density of the cosmos, namely E(O) = mc<sup>2</sup>/22. The second is negative norm (i.e. ghost) energy connected to the empty set quantum wave and is equal to the conjectured dark energy density of the cosmos E(D) = mc<sup>2</sup> (21/22) presumed to be behind the observed accelerated cosmic expansion. That way we were able to not only explain the physics of dark energy without adding any new concepts or novel additional ingredients but also we were able to compute the dark energy density accurately and in full agreement with measurements and observations. 展开更多
关键词 Negative Norms Quantum Ghosts Dark Energy Accelerated cosmic expansion SUPERSTRINGS Quantum Field Theory Cantorian-Fractal Spacetime Einstein Relativity Non-Fictional Spurions
下载PDF
Quantum Dark Energy from the Hyperbolic Transfinite Cantorian Geometry of the Cosmos 被引量:1
10
作者 Mohamed S. El Naschie 《Natural Science》 2016年第3期152-159,共8页
The quintessence of hyperbolic geometry is transferred to a transfinite Cantorian-fractal setting in the present work. Starting from the building block of E-infinity Cantorian spacetime theory, namely a quantum pre-pa... The quintessence of hyperbolic geometry is transferred to a transfinite Cantorian-fractal setting in the present work. Starting from the building block of E-infinity Cantorian spacetime theory, namely a quantum pre-particle zero set as a core and a quantum pre-wave empty set as cobordism or surface of the core, we connect the interaction of two such self similar units to a compact four dimensional manifold and a corresponding holographic boundary akin to the compactified Klein modular curve with SL(2,7) symmetry. Based on this model in conjunction with a 4D compact hy- perbolic manifold M(4) and the associated general theory, the so obtained ordinary and dark en- ergy density of the cosmos is found to be in complete agreement with previous analysis as well as cosmic measurements and observations such as WMAP and Type 1a supernova. 展开更多
关键词 Dark Energy Accelerated cosmic expansion Hyperbolic Geometry Fractal Geometry Transfinite set Theory ‘tHooft Dimensional Regularization Hardy’s Quantum Entanglement Davis Hyperbolic Manifold Compactified Klein Modular Curve Fractal Counting Lie Symmetry Groups Stein Spaces
下载PDF
Matter Loops Corrected Modified Gravity in Palatini Formulation
11
作者 MENG Xin-He WANG Peng 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第7期275-278,共4页
Recently,corrections to the standard Einstein Hilbert action were proposed to explain the current cosmicacceleration in stead of introducing dark energy.In the Palatini formulation of those modified gravity models,the... Recently,corrections to the standard Einstein Hilbert action were proposed to explain the current cosmicacceleration in stead of introducing dark energy.In the Palatini formulation of those modified gravity models,thereis an important observation due to Arkani Hamed:matter loops will give rise to a correction to the modified gravityaction proportional to the Ricci scalar of the metric.In the presence of such a term,we show that the current formsof modified gravity models in Palatini formulation,specifically,the 1/R gravity and in R gravity,will have phantoms.Then we study the possible instabilities due to the presence of phantom fields.We show that the strong instability inthe metric formulation of 1/R gravity indicated by Dolgov and Kawasaki will not appear and the decay timescales forthe phantom fields may be long enough for the theories to make sense as effective field theory.On the other hand,if wechange the sign of the modification terms to eliminate the phantoms,some other inconsistencies will arise for the variousversions of the modified gravity models.Finally,we comment on the universal property of the Palatini formulation ofthe matter loops corrected modified gravity models and its implications. 展开更多
关键词 modified gravity accelerated cosmic expansion loop correction and dark energy
下载PDF
The Big Bang Influence in a Cosmological Wave Complex
12
作者 Ivan Nilsen 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2022年第4期1102-1109,共8页
The Big Bang theory states that the universe was created from pure energy, although matter, in general, is also pure energy and there is no known physical existence that is not pure energy in accordance with the mass-... The Big Bang theory states that the universe was created from pure energy, although matter, in general, is also pure energy and there is no known physical existence that is not pure energy in accordance with the mass-energy equation. All known energy is situated in a field, and it can be questioned whether also the Big Bang was situated in a field in the primordial moment it inflated into the subsequent cosmic expansion that so far lets us observe a 93-billion-light-year-wide spherical volume of the universe. In this study, the Big Bang’s gravitational influence, particularly in the form of an externally radiated gravitational wave, is considered in connection to its situation in a surrounding field with a different expansion rate than itself. The results suggest that the least possible size of the universe can be predicted by the expression of the gravitational wave produced by Big Bang, revealing that the universe has a significantly greater size than the observable, and further that Big Bang might be the production of only one of many cosmic galaxies situated together in a cosmological wave complex (CWC) where the amplitude is self-maintained by inflations. 展开更多
关键词 Gravitational Waves Big Bang INFLATION Cosmological Wave Complex cosmic expansion Dark Energy
下载PDF
A Combined Heterotic String and Kähler Manifold Elucidation of Ordinary Energy,Dark Matter,Olbers’s Paradox and Pure Dark Energy Density of the Cosmos
13
作者 Mohamed S.El Naschie 《Journal of Modern Physics》 2017年第7期1101-1118,共18页
We utilize the topological-geometrical structure imposed by the Heterotic superstring theory on spacetime in conjunction with the K3 K&auml;hler manifold to explain the mysterious nature of dark matter and its cou... We utilize the topological-geometrical structure imposed by the Heterotic superstring theory on spacetime in conjunction with the K3 K&auml;hler manifold to explain the mysterious nature of dark matter and its coupling to the pure dark energy density of the cosmos. The analogous situations in the case of a Kerr black hole as well as the redundant components of the Riemannian tensor are pointed out and the final result was found to be in complete agreement with all previous theoretical ones as well as all recent accurate measurements and cosmic observations. We conclude by commenting briefly on the Cantorian model of Zitterbewegung and the connection between Olbers’s paradox and dark energy. 展开更多
关键词 Heterotic Strings K3 Kahler Manifold Dark Matter Pure Heterotic Dark Energy Einstein’s Relativity Accelerated cosmic expansion Negative Gravity Fractal Spacetime E-Infinity Theory Kerr Black Holes Geometry Kaluza-Klein Theory Dvoretzky’s Theorem Empty Set Zero Set Connes Noncommutative Geometry ‘tHooft Renormalon STATE Vector Reduction Density Matrix ‘tHooft Fractal Spacetime Transfinite Cellular Automata Interpretation of Quantum Mechanics ZITTERBEWEGUNG Olbers’s Dark Sky Paradox
下载PDF
Constrains on f(T) gravity with the strong gravitational lensing data 被引量:3
14
作者 WU Juan LI ZhengXiang +1 位作者 WU PuXun YU HongWei 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2014年第5期988-993,共6页
Strong lensing is an effective way to probing the properties of dark energy.In this paper,we use the strong lensing data to constrain the f(T)theory,which is a new modified gravity to explain the present accelerating ... Strong lensing is an effective way to probing the properties of dark energy.In this paper,we use the strong lensing data to constrain the f(T)theory,which is a new modified gravity to explain the present accelerating cosmic expansion without the need of dark energy.In our discussion,the CMB and BAO data are also added to constrain model parameters tightly and three different f(T)models are studied.We find that strong lensing has an important role on constraining f(T)models,and once the CMB+BAO data is added,a tighter constraint is obtained.However,the consistency of our result with what is obtained from SNIa+CMB+BAO is actually model-dependent. 展开更多
关键词 strong gravitational lensing f(T) gravity accelerated cosmic expansion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部