Gamma-ray bursts (GRBs) are the most powerful explosions in the universe. Alt-hough the exact mechanism behind these explosions remains elusive, GRBs hold great promise as cosmological probes for two main reasons: the...Gamma-ray bursts (GRBs) are the most powerful explosions in the universe. Alt-hough the exact mechanism behind these explosions remains elusive, GRBs hold great promise as cosmological probes for two main reasons: they have been observed up to very high redshift (z > 9), and their gamma-ray emission is unencumbered by any intervening dust. Several GRB energy and luminosity indicators have been discovered. These indicators correlate an observable quantity, like the intrinsic peak energy, E<sub>p</sub>,<sub>i</sub>, in the spectrum of a burst to an unobservable parameter like the equivalent isotropic energy, E<sub>iso</sub>, or the isotropic peak luminosity, L<sub>p,iso</sub>. This paper provides a brief review of one of these energy and luminosity indicators, the Amati relation, and discusses its potential use as a cosmological probe.展开更多
文摘Gamma-ray bursts (GRBs) are the most powerful explosions in the universe. Alt-hough the exact mechanism behind these explosions remains elusive, GRBs hold great promise as cosmological probes for two main reasons: they have been observed up to very high redshift (z > 9), and their gamma-ray emission is unencumbered by any intervening dust. Several GRB energy and luminosity indicators have been discovered. These indicators correlate an observable quantity, like the intrinsic peak energy, E<sub>p</sub>,<sub>i</sub>, in the spectrum of a burst to an unobservable parameter like the equivalent isotropic energy, E<sub>iso</sub>, or the isotropic peak luminosity, L<sub>p,iso</sub>. This paper provides a brief review of one of these energy and luminosity indicators, the Amati relation, and discusses its potential use as a cosmological probe.