Software.defined networking(SDN) enables third.part companies to participate in the network function innovations. A number of instances for one network function will inevitably co.exist in the network. Although some o...Software.defined networking(SDN) enables third.part companies to participate in the network function innovations. A number of instances for one network function will inevitably co.exist in the network. Although some orchestration architecture has been proposed to chain network functions, rare works are focused on how to optimize this process. In this paper, we propose an optimized model for network function orchestration, function combination model(FCM). Our main contributions are as following. First, network functions are featured with a new abstraction, and are open to external providers. And FCM identifies network functions using unique type, and organizes their instances distributed over the network with the appropriate way. Second, with the specialized demands, we can combine function instances under the global network views, and formulate it into the problem of Boolean linear program(BLP). A simulated annealing algorithm is designed to approach optimal solution for this BLP. Finally, the numerical experiment demonstrates that our model can create outstanding composite schemas efficiently.展开更多
基金supported by the China Postdoctoral Fund Project (No.44603)the National Natural Science Foundation of China (No.61309020)+1 种基金the National key Research and Development Program of China (No.2016YFB0800100, 2016YFB0800101)the National Natural Science Fund for Creative Research Groups Project(No.61521003)
文摘Software.defined networking(SDN) enables third.part companies to participate in the network function innovations. A number of instances for one network function will inevitably co.exist in the network. Although some orchestration architecture has been proposed to chain network functions, rare works are focused on how to optimize this process. In this paper, we propose an optimized model for network function orchestration, function combination model(FCM). Our main contributions are as following. First, network functions are featured with a new abstraction, and are open to external providers. And FCM identifies network functions using unique type, and organizes their instances distributed over the network with the appropriate way. Second, with the specialized demands, we can combine function instances under the global network views, and formulate it into the problem of Boolean linear program(BLP). A simulated annealing algorithm is designed to approach optimal solution for this BLP. Finally, the numerical experiment demonstrates that our model can create outstanding composite schemas efficiently.