Diabetes,one of the world's top ten diseases,is known for its high mortality and complication rates and low cure rate.Prediabetes precedes the onset of diabetes,during which effective treatment can reduce diabetes...Diabetes,one of the world's top ten diseases,is known for its high mortality and complication rates and low cure rate.Prediabetes precedes the onset of diabetes,during which effective treatment can reduce diabetes risk.Prediabetes risk factors include high-calorie and high-fat diets,sedentary lifestyles,and stress.Consequences may include considerable damage to vital organs,including the retina,liver,and kidneys.Interventions for treating prediabetes include a healthy lifestyle diet and pharmacological treatments.However,while these options are effective in the short term,they may fail due to the difficulty of long-term implementation.Medications may also be used to treat prediabetes.This review examines prediabetic treatments,particularly metformin,glucagon-like peptide-1 receptor agonists,sodium glucose cotransporter 2 inhibitors,vitamin D,and herbal medicines.Given the remarkable impact of prediabetes on the progression of diabetes mellitus,it is crucial to intervene promptly and effectively to regulate prediabetes.However,the current body of research on prediabetes is limited,and there is considerable confusion surrounding clinically relevant medications.This paper aims to provide a comprehensive summary of the pathogenesis of prediabetes mellitus and its associated therapeutic drugs.The ultimate goal is to facilitate the clinical utilization of medications and achieve efficient and timely control of diabetes mellitus.展开更多
In this paper,we concentrate on updating the clinical research on sodium-glucose cotransporter inhibitors(SGLTis)for patients with type 2 diabetes who have heart failure with a preserved injection fraction,acute heart...In this paper,we concentrate on updating the clinical research on sodium-glucose cotransporter inhibitors(SGLTis)for patients with type 2 diabetes who have heart failure with a preserved injection fraction,acute heart failure,atrial fibrillation,primary prevention of atherosclerotic cardiovascular disease/cardiovascular disease,and acute myocardial infarction.We searched the data of randomized controlled trials and meta-analyses of SGLTis in patients with diabetes from PubMed between January 1,2020 and April 6,2024 for our review.According to our review,certain SGLTis(empagliflozin,dapagliflozin,canagliflozin,and tofogliflozin),but not sodium-glucose cotransporter 1 inhibitor(SGLT1i),exhibit relatively superior clinical safety and effectiveness for treating the abovementioned diseases.Proper utilization of SGLTis in these patients can foster clinical improvement and offer an alternative medication option.However,clinical trials involving SGLTis for certain diseases have relatively small sample sizes,brief intervention durations,and conclusions based on weak evidence,necessitating additional data.These findings are significant and valuable for providing a more comprehensive reference and new possibilities for the clinical utilization and scientific exploration of SGLTis.展开更多
Diabetic nephropathy(DN)is the leading cause of end-stage renal disease and is also associated with increased risk for cardiovascular events.Until recently,strict glycemic control and blockade of the renin-angiotensin...Diabetic nephropathy(DN)is the leading cause of end-stage renal disease and is also associated with increased risk for cardiovascular events.Until recently,strict glycemic control and blockade of the renin-angiotensin system(RAS)constituted the mainstay of treatment of DN.However,randomized controlled trials showed that sodium-glucose cotransporter 2 inhibitors further reduce the progression of DN.Therefore,these agents are recommended in all patients with DN regardless of DN stage and HbA1c levels.Moreover,additional blockade of the RAS with finerenone,a selective non-steroidal mineralocorticoid receptor antagonist,was also shown to prevent both the decline of renal function and cardiovascular events in this population.Finally,promising preliminary findings suggest that glucagon-like peptide 1 receptor agonists might also exert reno-and cardioprotective effects in patients with DN.Hopefully,this knowledge will improve the outcomes of this high-risk group of patients.展开更多
Human sodium-glucose cotransporter 2 (hSGLT2) is a membrane protein responsible for glucose reabsorption from the glomerular filtrate in the proximal tubule. Inhibition of hSGLT2 has been regarded as a brand new thera...Human sodium-glucose cotransporter 2 (hSGLT2) is a membrane protein responsible for glucose reabsorption from the glomerular filtrate in the proximal tubule. Inhibition of hSGLT2 has been regarded as a brand new therapeutic approach for the treatment of type 2 diabetes mellitus (T2DM) due to its non-insulin related characteristics with less side effects. Current commercially available hSGLT2 inhibitors are all C-glycoside inhibitors. Previous studies have reported that N-glycoside inhibitors have better potential to serve as new drugs due to their good metabolic stability. In addition, non-glycoside inhibitors have been shown to exhibit the capability to overcome the existing problems of current glycoside inhibitors, including low tissue permeability, poor stability and short serum half-time. Here, we aimed to discover novel N-glycoside and non-glycoside hSGLT2 inhibitors by a combination of several computational approaches. A ligand-based pharmacophore model was generated, well validated and subsequently utilized as a 3D query to identify novel hSGLT2 inhibitors from National Cancer Institute (NCI) and Traditional Chinese Medicine (TCM) databases. Finally, one N-glycoside (NSC679207) and one non-glycoside (TCM_Piperenol_A) hSGLT2 inhibitors were successfully identified, which were proven to exhibit excellent binding affinities, pharmacokinetic properties and less toxicity than the commercially available hSGLT2 inhibitor, canagliflozin, via molecular docking, ADMET prediction, molecular dynamics (MD) simulations and binding free energy calculations. All together, our results strongly suggest that these two compounds have great potential to serve as novel hSGLT2 inhibitors for the treatment of T2DM and their efficacies may be further examined by a series of in vitro and/or in vivo bioassays.展开更多
Diabetes mellitus and associated chronic hyperglycemia enhance the risk of acute ischemic stroke and lead to worsened clinical outcome and increased mortality. However, post-stroke hyperglycemia is also present in a n...Diabetes mellitus and associated chronic hyperglycemia enhance the risk of acute ischemic stroke and lead to worsened clinical outcome and increased mortality. However, post-stroke hyperglycemia is also present in a number of non-diabetic patients after acute ischemic stroke, presumably as a stress response. The aim of this review is to summarize the main effects of hyperglycemia when associated to ischemic injury in acute stroke patients, highlighting the clinical and neurological outcomes in these conditions and after the administration of the currently approved pharmacological treatment, i.e. insulin. The disappointing results of the clinical trials on insulin(including the hypoglycemic events) demand a change of strategy based on more focused therapies. Starting from the comprehensive evaluation of the physiopathological alterations occurring in the ischemic brain during hyperglycemic conditions, the effects of various classes of glucose-lowering drugs are reviewed, such as glucose-like peptide-1 receptor agonists, DPP-4 inhibitors and sodium glucose cotransporter 2 inhibitors, in the perspective of overcoming the up-to-date limitations and of evaluating the effectiveness of new potential therapeutic strategies.展开更多
Liver cirrhosis and diabetes mellitus(DM)are both common conditions with significant socioeconomic burden and impact on morbidity and mortality.A bidirectional relationship exists between DM and liver cirrhosis regard...Liver cirrhosis and diabetes mellitus(DM)are both common conditions with significant socioeconomic burden and impact on morbidity and mortality.A bidirectional relationship exists between DM and liver cirrhosis regarding both etiology and disease-related complications.Type 2 DM(T2DM)is a wellrecognized risk factor for chronic liver disease and vice-versa,DM may develop as a complication of cirrhosis,irrespective of its etiology.Liver transplantation(LT)represents an important treatment option for patients with end-stage liver disease due to non-alcoholic fatty liver disease(NAFLD),which represents a hepatic manifestation of metabolic syndrome and a common complication of T2DM.The metabolic risk factors including immunosuppressive drugs,can contribute to persistent or de novo development of DM and NAFLD after LT.T2DM,obesity,cardiovascular morbidities and renal impairment,frequently associated with metabolic syndrome and NAFLD,may have negative impact on short and long-term outcomes following LT.The treatment of DM in the context of chronic liver disease and post-transplant is challenging,but new emerging therapies such as glucagon-like peptide-1 receptor agonists(GLP-1RAs)and sodium–glucose cotransporter 2 inhibitors(SGLT2i)targeting multiple mechanisms in the shared pathophysiology of disorders such as oxidative stress and chronic inflammation are a promising tool in future patient management.展开更多
Type 2 diabetes (T2D) is a disorder characterized by chronic inflated blood glucose levels (hyperglycemia), at first due to insulin resistance and unregulated insulin secretion but with tendency towards global spreadi...Type 2 diabetes (T2D) is a disorder characterized by chronic inflated blood glucose levels (hyperglycemia), at first due to insulin resistance and unregulated insulin secretion but with tendency towards global spreading. The gut microbiota is recognized to have an influence on T2D, although surveys have not formed a clear overview to date. Because of the interactions between gut microbiota and host homeostasis, intestinal bacteria are believed to play a large role in various diseases, including metabolic syndrome, obesity and associated disease. In this review, we highlight the animal and human studies which have elucidated the roles of metformin,α-glucosidase inhibitors, glucagon-like peptide-1 agonists, peroxisome proliferator-activated receptors γ agonists, inhibitors of dipeptidyl peptidase-4, sodium/glucose cotransporter inhibitors, and other less studied medications on gut microbiota. This review is dedicated to one of the most widespread diseases, T2D, and the currently used antidiabetic drugs and most promising new findings. In general, the gut microbiota has been shown to have an influence on host metabolism, food consumption, satiety, glucose homoeostasis, and weight gain. Altered intestinal microbiota composition has been noticed in cardiovascular diseases, colon cancer, rheumatoid arthritis, T2D, and obesity. Therefore, the main effect of antidiabetic drugs is on the microbiome composition, basically increasing the short-chain fatty acids-producing bacteria, responsible for losing weight and suppressing inflammation.展开更多
Three major cardiovascular outcome trials(CVOTs)with a new class of antidiabetic drugs-sodium-glucose cotransporter 2(SGLT2)inhibitors(EMPAREG OUTCOME trial with empagliflozin,CANVAS Program with canagliflozin,DECLARE...Three major cardiovascular outcome trials(CVOTs)with a new class of antidiabetic drugs-sodium-glucose cotransporter 2(SGLT2)inhibitors(EMPAREG OUTCOME trial with empagliflozin,CANVAS Program with canagliflozin,DECLARE-TIMI 58 with dapagliflozin)unexpectedly showed that cardiovascular outcomes could be improved possibly due to a reduction in heart failure risk,which seems to be the most sensitive outcome of SGLT2 inhibition.No other CVOT to date has shown any significant benefit on heart failure events.Even more impressive findings came recently from the DAPA-HF trial in patients with confirmed and well-treated heart failure:Dapagliflozin was shown to reduce heart failure risk for patients with heart failure with reduced ejection fraction regardless of diabetes status.Nevertheless,despite their possible wide clinical implications,there is much doubt about the mechanisms of action and a lot of questions to unravel,especially now when their benefits translated to nondiabetic patients,rising doubts about the validity of some current mechanistic assumptions.The time frame of their cardiovascular benefits excludes glucoselowering and antiatherosclerotic-mediated effects and multiple other mechanisms,direct cardiac as well as systemic,are suggested to explain their early cardiorenal benefits.These are:Anti-inflammatory,antifibrotic,antioxidative,antiapoptotic properties,then renoprotective and hemodynamic effects,attenuation of glucotoxicity,reduction of uric acid levels and epicardial adipose tissue,modification of neurohumoral system and cardiac fuel energetics,sodiumhydrogen exchange inhibition.The most logic explanation seems that SGLT2 inhibitors timely target various mechanisms underpinning heart failure pathogenesis.All the proposed mechanisms of their action could interfere with evolution of heart failure and are discussed separately within the main text.展开更多
Sodium-glucose cotransporter 2(SGLT2) inhibition induces glucosuria and decreases blood glucose levels in diabetic patients and lowers hypoglycemic risk. SGLT1 is expressed in the kidney and intestine; SGLT1 inhibitio...Sodium-glucose cotransporter 2(SGLT2) inhibition induces glucosuria and decreases blood glucose levels in diabetic patients and lowers hypoglycemic risk. SGLT1 is expressed in the kidney and intestine; SGLT1 inhibition causes abdominal symptoms such as diarrhea and reduces incretin secretion. Therefore, SGLT2 selectivity is important. Ipragliflozin is highly selective for SGLT2. In type 2 diabetes mellitus(T2DM), urinaryglucose excretion increased to 90 g/24 h after 28 d of treatment with ipragliflozin 300 mg/d. Twelve weeks of ipragliflozin 50 mg/d vs placebo reduced glycated hemoglobin and body weight by 0.65% and 0.66 kg, respectively, in Western T2 DM patients, and by 1.3% and 1.89 kg, respectively, in Japanese patients. Ipragliflozin(highly selective SGLT2 inhibitor) improves glycemic control and reduces body weight and lowers hypoglycemic risk and abdominal symptoms. Ipragliflozin can be a novel anti-diabetic and antiobesity agent.展开更多
The Na+-K+-CI- cotransporter 1 and K+-CI- cotransporter 2 regulate the levels of intracellular chloride in hippocampal cells. Impaired chloride transport by these proteins is thought to be involved in the pathophys...The Na+-K+-CI- cotransporter 1 and K+-CI- cotransporter 2 regulate the levels of intracellular chloride in hippocampal cells. Impaired chloride transport by these proteins is thought to be involved in the pathophysiological mechanisms of mesial temporal lobe epilepsy. Imbalance in the relative expression of these two proteins can lead to a collapse of CI- homeostasis, resulting in a loss of gamma-aminobutyric acid-ergic inhibition and even epileptiform discharges. In this study, we investigated the expression of Na+-K+-CI- cotransporter 1 and K+-CI- cotransporter 2 in the sclerosed hippocampus of patients with mesial temporal lobe epilepsy, using western blot analysis and immunohistochemistry. Compared with the histologically normal hippocampus, the sclerosed hippocampus showed increased Na+-K+-Cl- cotransporter 1 expression and decreased K+-CI- cotransporter 2 expression, especially in CA2 and the dentate gyrus. The change was more prominent for the Na+-K+-CI- cotransporter 1 than for the K+-CI- cotransporter 2. These experimental findings indicate that the balance between intracellular and extracellular chloride may be disturbed in hippocampal sclerosis, contributing to the hyperexcitability underlying epileptic seizures. Changes in Na+-K+-CI-cotransporter 1 expression seems to be the main contributor. Our study may shed new light on possible therapies for patients with mesial temporal lobe epilepsy with hippocampal sclerosis.展开更多
Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease in the Western world. It is more prevalent in male gender, and with increasing age, obesity, and insulin resistance. Besides w...Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease in the Western world. It is more prevalent in male gender, and with increasing age, obesity, and insulin resistance. Besides weight loss, there are limited treatment options. The use of anti-diabetic medications has been studied with mixed results. In this review, we discuss the use of anti-diabetic medications in the management of NAFLD with a specific focus on sodium-glucose cotransporter 2 inhibitors. We shed light on the evidence supporting their use in detail and discuss limitations and future directions.展开更多
BACKGROUND Landmark trials have established the benefits of sodium-glucose cotransporter-2 inhibitors(SGLT2-Is)in cardiovascular disease including heart failure with reduced and preserved ejection fraction and renal d...BACKGROUND Landmark trials have established the benefits of sodium-glucose cotransporter-2 inhibitors(SGLT2-Is)in cardiovascular disease including heart failure with reduced and preserved ejection fraction and renal diseases regardless of the presence of diabetes mellitus.However,studies evaluating the role of SGLT2-Is in metabolic syndrome(MetS)are limited.AIM This study primarily aimed to evaluate the impact of SGLT2-Is on the components of MetS.METHODS Two independent reviewers and an experienced librarian searched Medline,Scopus and the Cochrane central from inception to December 9,2021 to identify placebo controlled randomized controlled trials that evaluated the impact of SGLT2-Is on the components of MetS as an endpoint.Pre-and post-treatment data of each component were obtained.A meta-analysis was performed using the RevMan(version 5.3;Copenhagen:The Nordic Cochrane Center,The Cochrane Collaboration).RESULTS Treatment with SGLT2-Is resulted in a decrease in fasting plasma glucose(–18.07 mg/dL;95%CI:-25.32 to–10.82),systolic blood pressure(–1.37 mmHg;95%CI:-2.08 to–0.65),and waist circumference(–1.28 cm;95%CI:-1.39 to–1.18)compared to placebo.The impact on highdensity lipoprotein cholesterol was similar to placebo(0.01 mg/dL;95%CI:-0.05 to 0.07).CONCLUSION SGLT2-Is have a promising role in the management of MetS.展开更多
The circadian system plays an immense role in controlling physiological processes in our body.The suprachiasmatic nucleus (SCN) supervises this system,regulating and harmonising the circadian rhythms in our body.Most ...The circadian system plays an immense role in controlling physiological processes in our body.The suprachiasmatic nucleus (SCN) supervises this system,regulating and harmonising the circadian rhythms in our body.Most neurons present in the SCN are GABAergic neurons.Although GABA is considered the main inhibitory neurotransmitter of the CNS,recent studies have shown that excitatory responses were recorded in this area.These responses are enabled by an increase in intracellular chloride ions[Cl;];levels.The chloride (Cl;) levels in GABAergic neurons are controlled by two solute carrier 12 (SLC12)cation-chloride-cotransporters (CCCs):Na^(+)/K^(+)/Cl^(-)co-transporter (NKCC1) and K^(+)/Cl^(-)cotransporter (KCC2),that respectively cause an influx and efflux of Cl^(-).Recent works have found altered expression and/or activity of either of these co-transporters in SCN neurons and have been associated with circadian rhythms.In this review,we summarize and discuss the role of CCCs in circadian rhythms,and highlight these recent advances which attest to CCC’s growing potential as strong research and therapeutic targets.展开更多
Currently, hepatitis B virus(HBV), upon attaching to human hepatocytes, is considered to interact first with heparan sulfate proteoglycan(HSPG) via an antigenic loop of HBV envelope S protein. Then, it is promptly tra...Currently, hepatitis B virus(HBV), upon attaching to human hepatocytes, is considered to interact first with heparan sulfate proteoglycan(HSPG) via an antigenic loop of HBV envelope S protein. Then, it is promptly transferred to the sodium taurocholate cotransporting polypeptide(NTCP) via the myristoylated N-terminal sequence of pre-S1 region(from Gly-2 to Gly-48, HBV genotype D), and it finally enters the cell by endocytosis. However, it is not clear how HSPG passes HBV to NTCP and how NTCP contributes to the cellular entry of HBV. Owing to the poor availability and the difficulty of manipulations, including fluorophore encapsulation, it has been nearly impossible to perform biochemical and cytochemical analyses using a substantial amount of HBV. A bio-nanocapsule(BNC), which is a hollow nanoparticle consisting of HBV envelope L protein, was efficiently synthesized in Saccharomyces cerevisiae. Since BNC could encapsulate payloads(drugs, genes, proteins) and specifically enter human hepatic cells utilizing HBV-derived infection machinery, it could be used as a model of HBV infection to elucidate the early infection machinery. Recently, it was demonstrated that the N-terminal sequence of pre-S1 region(from Asn-9 to Gly-24) possesses low p H-dependent fusogenic activity, which might play a crucial role in the endosomal escape of BNC payloads and in the uncoating process of HBV. In this minireview, we describe a model in which each domain of the HBV L protein contributes to attachment onto human hepatic cells through HSPG, initiation of endocytosis, interaction with NTCP in endosomes, and consequent provocation of membrane fusion followed by endosomal escape.展开更多
BACKGROUND Sodium taurocholate cotransport polypeptide(NTCP)deficiency disease is a genetic metabolic disorder due to mutations in the SLC10A1 gene and impaired bile acid salt uptake by the basolateral membrane transp...BACKGROUND Sodium taurocholate cotransport polypeptide(NTCP)deficiency disease is a genetic metabolic disorder due to mutations in the SLC10A1 gene and impaired bile acid salt uptake by the basolateral membrane transport protein NTCP in hepatocytes.A variety of clinical manifestations and genetic mutation loci have been reported for this disease.However,specific therapeutic measures are lacking,and the long-term effects are unknown.CASE SUMMARY An infant with elevated bile acids and behavioral neurodevelopmental delay failed to respond to bile acid-lowering therapy.Genetic testing for metabolic liver disease revealed that the child had NTCP deficiency due to the SLC10A1 mutation:c.422dupA(p.Y141X),which is a novel mutation site.The current followup revealed a gradual decrease in bile acid levels after 1 year of age,but the child still had behavioral neurodevelopmental delays.CONCLUSION The clinical manifestations,genetic characteristics,treatment and long-term prognosis due to NTCP deficiency remain poorly defined and need to be further confirmed by more studies and reports.展开更多
AIM: To investigate the role of Na<sup>+</sup>/K<sup>+</sup>/2Cl<sup>-</sup> cotransporter 1 (NKCC1) in the regulation of genes involved in cell cycle progression and the clinicopat...AIM: To investigate the role of Na<sup>+</sup>/K<sup>+</sup>/2Cl<sup>-</sup> cotransporter 1 (NKCC1) in the regulation of genes involved in cell cycle progression and the clinicopathological significance of its expression in esophageal squamous cell carcinoma (ESCC).展开更多
The beneficial cardiorenal outcomes of sodium-glucose cotransporter 2 inhibitors(SGLT2i)in patients with type 2 diabetes mellitus(T2DM)have been substantiated by multiple clinical trials,resulting in increased interes...The beneficial cardiorenal outcomes of sodium-glucose cotransporter 2 inhibitors(SGLT2i)in patients with type 2 diabetes mellitus(T2DM)have been substantiated by multiple clinical trials,resulting in increased interest in the multifarious pathways by which their mechanisms act.The principal effect of SGLT2i(-flozin drugs)can be appreciated in their ability to block the SGLT2 protein within the kidneys,inhibiting glucose reabsorption,and causing an associated osmotic diuresis.This ameliorates plasma glucose elevations and the negative cardiorenal sequelae associated with the latter.These include aberrant mitochondrial metabolism and oxidative stress burden,endothelial cell dysfunction,pernicious neurohormonal activation,and the development of inimical hemodynamics.Positive outcomes within these domains have been validated with SGLT2i administration.However,by modulating the sodium-glucose cotransporter in the proximal tubule(PT),SGLT2i consequently promotes sodium-phosphate cotransporter activity with phosphate retention.Phosphatemia,even at physiologic levels,poses a risk in cardiovascular disease burden,more so in patients with type 2 diabetes mellitus(T2DM).There also exists an association between phosphatemia and renal impairment,the latter hampering cardiovascular function through an array of physiologic roles,such as fluid regulation,hormonal tone,and neuromodulation.Moreover,increased phosphate flux is associated with an associated increase in fibroblast growth factor 23 levels,also detrimental to homeostatic cardiometabolic function.A contemporary commentary concerning this notion unifying cardiovascular outcome trial data with the translational biology of phosphate is scant within the literature.Given the apparent beneficial outcomes associated with SGLT2i administration notwithstanding negative effects of phosphatemia,we discuss in this review the effects of phosphate on the cardiometabolic status in patients with T2DM and cardiorenal disease,as well as the mechanisms by which SGLT2i counteract or overcome them to achieve their net effects.Content drawn to develop this conversation begins with proceedings in the basic sciences and works towards clinical trial data.展开更多
Bumetanide has been shown to lessen cerebral edema and reduce the infarct area in the acute stage of cerebral ischemia. Few studies focus on the effects of bumetanide on neuroprotection and neurogenesis in the chronic...Bumetanide has been shown to lessen cerebral edema and reduce the infarct area in the acute stage of cerebral ischemia. Few studies focus on the effects of bumetanide on neuroprotection and neurogenesis in the chronic stage of cerebral ischemia. We established a rat model of cerebral ischemia by injecting endothelin-1 in the left cortical motor area and left corpus striatum. Seven days later, bumetanide 200 μg/kg/day was injected into the lateral ventricle for 21 consecutive days with a mini-osmotic pump. Results demonstrated that the number of neuroblasts cells and the total length of dendrites increased, escape latency reduced, and the number of platform crossings increased in the rat hippocampal dentate gyrus in the chronic stage of cerebral ischemia. These findings suggest that bumetanide promoted neural precursor cell regeneration, dendritic development and the recovery of cognitive function, and protected brain tissue in the chronic stage of ischemia.展开更多
Sodium-glucose cotransporter 2(SGLT2)inhibitors have gained momentum as the latest class of antidiabetic agents for improving glycemic control.Large-scale clinical trials have reported that SGLT2 inhibitors reduced ca...Sodium-glucose cotransporter 2(SGLT2)inhibitors have gained momentum as the latest class of antidiabetic agents for improving glycemic control.Large-scale clinical trials have reported that SGLT2 inhibitors reduced cardiovascular outcomes,especially hospitalization for heart failure in patients with type 2 diabetes mellitus who have high risks of cardiovascular disease.Accumulating evidence has indicated that beneficial effects can be observed regardless of the presence or absence of type 2 diabetes mellitus.Accordingly,the Food and Drug Administration approved these agents specifically for treating patients with heart failure and a reduced ejection fraction.It has been concluded that canagliflozin,dapagliflozin,empagliflozin,or ertugliflozin can be recommended for preventing hospitalization associated with heart failure in patients with type 2 diabetes and established cardiovascular disease or those at high cardiovascular risk.In the present review,we explore the available evidence on SGLT2 inhibitors in terms of the cardioprotective effects,potential mechanisms,and ongoing clinical trials that may further clarify the cardiovascular effects of the agents.展开更多
Fulminant type 1 diabetes mellitus(FT1DM)is a subtype of type 1 diabetes mellitus characterized by an abrupt onset and a rapid and complete functional loss of isletβcells.It is a very rare disease generally associate...Fulminant type 1 diabetes mellitus(FT1DM)is a subtype of type 1 diabetes mellitus characterized by an abrupt onset and a rapid and complete functional loss of isletβcells.It is a very rare disease generally associated with ketoacidosis and the absence of circulating pancreatic islet-related autoantibodies.Diabetic ketoacidosis with normal blood glucose levels has been reported during sodiumglucose co-transporter 2(SGLT2)inhibitor therapy.CASE SUMMARY The patient was a 43-year-old woman that consulted a medical practitioner for malaise,thirst,and vomiting.Blood analysis showed high blood glucose levels(428 mg/dL),a mild increase of hemoglobin A1c(6.6%),and increased ketone bodies in urine.The patient was diagnosed with type 2 diabetes mellitus.The patient was initially treated with insulin,which was subsequently changed to an oral SGLT2 inhibitor.Antibodies to glutamic acid decarboxylase were negative.Four days after receiving oral SGLT2 inhibitor,she consulted at Mie University Hospital,complaining of fatigue and vomiting.Laboratory analysis revealed diabetic ketoacidosis with almost normal blood glucose levels.The endogenous insulin secretion was markedly low,and the serum levels of islet-related autoantibodies were undetectable.We made the diagnosis of FT1DM with concurrent SGLT2 inhibitor-associated euglycemic diabetic ketoacidosis.The patient's general condition improved after therapy with intravenous insulin and withdrawal of oral medication.She was discharged on day 14 with an indication of multiple daily insulin therapy.CONCLUSION This patient is a rare case of FT1DM that developed SGLT2 inhibitor-associated diabetic ketoacidosis with almost normal blood glucose levels.This case report underscores the importance of considering the diagnosis of FT1DM in patients with negative circulating autoantibodies and a history of hyperglycemia that subsequently develop euglycemic diabetic ketoacidosis following treatment with a SGLT2 inhibitor.展开更多
基金Supported by National Natural Science Foundation of China,No.31770948,No.31570875,and No.81803547Natural Science Foundation of Fujian Province,No.2021J01204and Fujian Provincial Regional Development Project,No.2021N3005.
文摘Diabetes,one of the world's top ten diseases,is known for its high mortality and complication rates and low cure rate.Prediabetes precedes the onset of diabetes,during which effective treatment can reduce diabetes risk.Prediabetes risk factors include high-calorie and high-fat diets,sedentary lifestyles,and stress.Consequences may include considerable damage to vital organs,including the retina,liver,and kidneys.Interventions for treating prediabetes include a healthy lifestyle diet and pharmacological treatments.However,while these options are effective in the short term,they may fail due to the difficulty of long-term implementation.Medications may also be used to treat prediabetes.This review examines prediabetic treatments,particularly metformin,glucagon-like peptide-1 receptor agonists,sodium glucose cotransporter 2 inhibitors,vitamin D,and herbal medicines.Given the remarkable impact of prediabetes on the progression of diabetes mellitus,it is crucial to intervene promptly and effectively to regulate prediabetes.However,the current body of research on prediabetes is limited,and there is considerable confusion surrounding clinically relevant medications.This paper aims to provide a comprehensive summary of the pathogenesis of prediabetes mellitus and its associated therapeutic drugs.The ultimate goal is to facilitate the clinical utilization of medications and achieve efficient and timely control of diabetes mellitus.
文摘In this paper,we concentrate on updating the clinical research on sodium-glucose cotransporter inhibitors(SGLTis)for patients with type 2 diabetes who have heart failure with a preserved injection fraction,acute heart failure,atrial fibrillation,primary prevention of atherosclerotic cardiovascular disease/cardiovascular disease,and acute myocardial infarction.We searched the data of randomized controlled trials and meta-analyses of SGLTis in patients with diabetes from PubMed between January 1,2020 and April 6,2024 for our review.According to our review,certain SGLTis(empagliflozin,dapagliflozin,canagliflozin,and tofogliflozin),but not sodium-glucose cotransporter 1 inhibitor(SGLT1i),exhibit relatively superior clinical safety and effectiveness for treating the abovementioned diseases.Proper utilization of SGLTis in these patients can foster clinical improvement and offer an alternative medication option.However,clinical trials involving SGLTis for certain diseases have relatively small sample sizes,brief intervention durations,and conclusions based on weak evidence,necessitating additional data.These findings are significant and valuable for providing a more comprehensive reference and new possibilities for the clinical utilization and scientific exploration of SGLTis.
文摘Diabetic nephropathy(DN)is the leading cause of end-stage renal disease and is also associated with increased risk for cardiovascular events.Until recently,strict glycemic control and blockade of the renin-angiotensin system(RAS)constituted the mainstay of treatment of DN.However,randomized controlled trials showed that sodium-glucose cotransporter 2 inhibitors further reduce the progression of DN.Therefore,these agents are recommended in all patients with DN regardless of DN stage and HbA1c levels.Moreover,additional blockade of the RAS with finerenone,a selective non-steroidal mineralocorticoid receptor antagonist,was also shown to prevent both the decline of renal function and cardiovascular events in this population.Finally,promising preliminary findings suggest that glucagon-like peptide 1 receptor agonists might also exert reno-and cardioprotective effects in patients with DN.Hopefully,this knowledge will improve the outcomes of this high-risk group of patients.
文摘Human sodium-glucose cotransporter 2 (hSGLT2) is a membrane protein responsible for glucose reabsorption from the glomerular filtrate in the proximal tubule. Inhibition of hSGLT2 has been regarded as a brand new therapeutic approach for the treatment of type 2 diabetes mellitus (T2DM) due to its non-insulin related characteristics with less side effects. Current commercially available hSGLT2 inhibitors are all C-glycoside inhibitors. Previous studies have reported that N-glycoside inhibitors have better potential to serve as new drugs due to their good metabolic stability. In addition, non-glycoside inhibitors have been shown to exhibit the capability to overcome the existing problems of current glycoside inhibitors, including low tissue permeability, poor stability and short serum half-time. Here, we aimed to discover novel N-glycoside and non-glycoside hSGLT2 inhibitors by a combination of several computational approaches. A ligand-based pharmacophore model was generated, well validated and subsequently utilized as a 3D query to identify novel hSGLT2 inhibitors from National Cancer Institute (NCI) and Traditional Chinese Medicine (TCM) databases. Finally, one N-glycoside (NSC679207) and one non-glycoside (TCM_Piperenol_A) hSGLT2 inhibitors were successfully identified, which were proven to exhibit excellent binding affinities, pharmacokinetic properties and less toxicity than the commercially available hSGLT2 inhibitor, canagliflozin, via molecular docking, ADMET prediction, molecular dynamics (MD) simulations and binding free energy calculations. All together, our results strongly suggest that these two compounds have great potential to serve as novel hSGLT2 inhibitors for the treatment of T2DM and their efficacies may be further examined by a series of in vitro and/or in vivo bioassays.
基金supported by a grant from Catholic Universitary Center(Centro Universitario Cattolico)-Conferenza Episcopale Italiana,Rome,Italy(to FF)。
文摘Diabetes mellitus and associated chronic hyperglycemia enhance the risk of acute ischemic stroke and lead to worsened clinical outcome and increased mortality. However, post-stroke hyperglycemia is also present in a number of non-diabetic patients after acute ischemic stroke, presumably as a stress response. The aim of this review is to summarize the main effects of hyperglycemia when associated to ischemic injury in acute stroke patients, highlighting the clinical and neurological outcomes in these conditions and after the administration of the currently approved pharmacological treatment, i.e. insulin. The disappointing results of the clinical trials on insulin(including the hypoglycemic events) demand a change of strategy based on more focused therapies. Starting from the comprehensive evaluation of the physiopathological alterations occurring in the ischemic brain during hyperglycemic conditions, the effects of various classes of glucose-lowering drugs are reviewed, such as glucose-like peptide-1 receptor agonists, DPP-4 inhibitors and sodium glucose cotransporter 2 inhibitors, in the perspective of overcoming the up-to-date limitations and of evaluating the effectiveness of new potential therapeutic strategies.
文摘Liver cirrhosis and diabetes mellitus(DM)are both common conditions with significant socioeconomic burden and impact on morbidity and mortality.A bidirectional relationship exists between DM and liver cirrhosis regarding both etiology and disease-related complications.Type 2 DM(T2DM)is a wellrecognized risk factor for chronic liver disease and vice-versa,DM may develop as a complication of cirrhosis,irrespective of its etiology.Liver transplantation(LT)represents an important treatment option for patients with end-stage liver disease due to non-alcoholic fatty liver disease(NAFLD),which represents a hepatic manifestation of metabolic syndrome and a common complication of T2DM.The metabolic risk factors including immunosuppressive drugs,can contribute to persistent or de novo development of DM and NAFLD after LT.T2DM,obesity,cardiovascular morbidities and renal impairment,frequently associated with metabolic syndrome and NAFLD,may have negative impact on short and long-term outcomes following LT.The treatment of DM in the context of chronic liver disease and post-transplant is challenging,but new emerging therapies such as glucagon-like peptide-1 receptor agonists(GLP-1RAs)and sodium–glucose cotransporter 2 inhibitors(SGLT2i)targeting multiple mechanisms in the shared pathophysiology of disorders such as oxidative stress and chronic inflammation are a promising tool in future patient management.
文摘Type 2 diabetes (T2D) is a disorder characterized by chronic inflated blood glucose levels (hyperglycemia), at first due to insulin resistance and unregulated insulin secretion but with tendency towards global spreading. The gut microbiota is recognized to have an influence on T2D, although surveys have not formed a clear overview to date. Because of the interactions between gut microbiota and host homeostasis, intestinal bacteria are believed to play a large role in various diseases, including metabolic syndrome, obesity and associated disease. In this review, we highlight the animal and human studies which have elucidated the roles of metformin,α-glucosidase inhibitors, glucagon-like peptide-1 agonists, peroxisome proliferator-activated receptors γ agonists, inhibitors of dipeptidyl peptidase-4, sodium/glucose cotransporter inhibitors, and other less studied medications on gut microbiota. This review is dedicated to one of the most widespread diseases, T2D, and the currently used antidiabetic drugs and most promising new findings. In general, the gut microbiota has been shown to have an influence on host metabolism, food consumption, satiety, glucose homoeostasis, and weight gain. Altered intestinal microbiota composition has been noticed in cardiovascular diseases, colon cancer, rheumatoid arthritis, T2D, and obesity. Therefore, the main effect of antidiabetic drugs is on the microbiome composition, basically increasing the short-chain fatty acids-producing bacteria, responsible for losing weight and suppressing inflammation.
文摘Three major cardiovascular outcome trials(CVOTs)with a new class of antidiabetic drugs-sodium-glucose cotransporter 2(SGLT2)inhibitors(EMPAREG OUTCOME trial with empagliflozin,CANVAS Program with canagliflozin,DECLARE-TIMI 58 with dapagliflozin)unexpectedly showed that cardiovascular outcomes could be improved possibly due to a reduction in heart failure risk,which seems to be the most sensitive outcome of SGLT2 inhibition.No other CVOT to date has shown any significant benefit on heart failure events.Even more impressive findings came recently from the DAPA-HF trial in patients with confirmed and well-treated heart failure:Dapagliflozin was shown to reduce heart failure risk for patients with heart failure with reduced ejection fraction regardless of diabetes status.Nevertheless,despite their possible wide clinical implications,there is much doubt about the mechanisms of action and a lot of questions to unravel,especially now when their benefits translated to nondiabetic patients,rising doubts about the validity of some current mechanistic assumptions.The time frame of their cardiovascular benefits excludes glucoselowering and antiatherosclerotic-mediated effects and multiple other mechanisms,direct cardiac as well as systemic,are suggested to explain their early cardiorenal benefits.These are:Anti-inflammatory,antifibrotic,antioxidative,antiapoptotic properties,then renoprotective and hemodynamic effects,attenuation of glucotoxicity,reduction of uric acid levels and epicardial adipose tissue,modification of neurohumoral system and cardiac fuel energetics,sodiumhydrogen exchange inhibition.The most logic explanation seems that SGLT2 inhibitors timely target various mechanisms underpinning heart failure pathogenesis.All the proposed mechanisms of their action could interfere with evolution of heart failure and are discussed separately within the main text.
文摘Sodium-glucose cotransporter 2(SGLT2) inhibition induces glucosuria and decreases blood glucose levels in diabetic patients and lowers hypoglycemic risk. SGLT1 is expressed in the kidney and intestine; SGLT1 inhibition causes abdominal symptoms such as diarrhea and reduces incretin secretion. Therefore, SGLT2 selectivity is important. Ipragliflozin is highly selective for SGLT2. In type 2 diabetes mellitus(T2DM), urinaryglucose excretion increased to 90 g/24 h after 28 d of treatment with ipragliflozin 300 mg/d. Twelve weeks of ipragliflozin 50 mg/d vs placebo reduced glycated hemoglobin and body weight by 0.65% and 0.66 kg, respectively, in Western T2 DM patients, and by 1.3% and 1.89 kg, respectively, in Japanese patients. Ipragliflozin(highly selective SGLT2 inhibitor) improves glycemic control and reduces body weight and lowers hypoglycemic risk and abdominal symptoms. Ipragliflozin can be a novel anti-diabetic and antiobesity agent.
基金supported by the Science and Technology Foundation of Guangdong Province,No.2008B060600063the National Natural Science Foundation of China,No. 81071050the Natural Science Foundation of Guangdong Province,No. S2011020005483
文摘The Na+-K+-CI- cotransporter 1 and K+-CI- cotransporter 2 regulate the levels of intracellular chloride in hippocampal cells. Impaired chloride transport by these proteins is thought to be involved in the pathophysiological mechanisms of mesial temporal lobe epilepsy. Imbalance in the relative expression of these two proteins can lead to a collapse of CI- homeostasis, resulting in a loss of gamma-aminobutyric acid-ergic inhibition and even epileptiform discharges. In this study, we investigated the expression of Na+-K+-CI- cotransporter 1 and K+-CI- cotransporter 2 in the sclerosed hippocampus of patients with mesial temporal lobe epilepsy, using western blot analysis and immunohistochemistry. Compared with the histologically normal hippocampus, the sclerosed hippocampus showed increased Na+-K+-Cl- cotransporter 1 expression and decreased K+-CI- cotransporter 2 expression, especially in CA2 and the dentate gyrus. The change was more prominent for the Na+-K+-CI- cotransporter 1 than for the K+-CI- cotransporter 2. These experimental findings indicate that the balance between intracellular and extracellular chloride may be disturbed in hippocampal sclerosis, contributing to the hyperexcitability underlying epileptic seizures. Changes in Na+-K+-CI-cotransporter 1 expression seems to be the main contributor. Our study may shed new light on possible therapies for patients with mesial temporal lobe epilepsy with hippocampal sclerosis.
文摘Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease in the Western world. It is more prevalent in male gender, and with increasing age, obesity, and insulin resistance. Besides weight loss, there are limited treatment options. The use of anti-diabetic medications has been studied with mixed results. In this review, we discuss the use of anti-diabetic medications in the management of NAFLD with a specific focus on sodium-glucose cotransporter 2 inhibitors. We shed light on the evidence supporting their use in detail and discuss limitations and future directions.
文摘BACKGROUND Landmark trials have established the benefits of sodium-glucose cotransporter-2 inhibitors(SGLT2-Is)in cardiovascular disease including heart failure with reduced and preserved ejection fraction and renal diseases regardless of the presence of diabetes mellitus.However,studies evaluating the role of SGLT2-Is in metabolic syndrome(MetS)are limited.AIM This study primarily aimed to evaluate the impact of SGLT2-Is on the components of MetS.METHODS Two independent reviewers and an experienced librarian searched Medline,Scopus and the Cochrane central from inception to December 9,2021 to identify placebo controlled randomized controlled trials that evaluated the impact of SGLT2-Is on the components of MetS as an endpoint.Pre-and post-treatment data of each component were obtained.A meta-analysis was performed using the RevMan(version 5.3;Copenhagen:The Nordic Cochrane Center,The Cochrane Collaboration).RESULTS Treatment with SGLT2-Is resulted in a decrease in fasting plasma glucose(–18.07 mg/dL;95%CI:-25.32 to–10.82),systolic blood pressure(–1.37 mmHg;95%CI:-2.08 to–0.65),and waist circumference(–1.28 cm;95%CI:-1.39 to–1.18)compared to placebo.The impact on highdensity lipoprotein cholesterol was similar to placebo(0.01 mg/dL;95%CI:-0.05 to 0.07).CONCLUSION SGLT2-Is have a promising role in the management of MetS.
基金supported by a Commonwealth Ph D Scholarship(S.S.J.)NSFC grants to Y.W.(31771188,31471027)+1 种基金the University of Exeter Medical School start-up fund(J.Z.)NIH Grants R01 NS109358(J.Z.)。
文摘The circadian system plays an immense role in controlling physiological processes in our body.The suprachiasmatic nucleus (SCN) supervises this system,regulating and harmonising the circadian rhythms in our body.Most neurons present in the SCN are GABAergic neurons.Although GABA is considered the main inhibitory neurotransmitter of the CNS,recent studies have shown that excitatory responses were recorded in this area.These responses are enabled by an increase in intracellular chloride ions[Cl;];levels.The chloride (Cl;) levels in GABAergic neurons are controlled by two solute carrier 12 (SLC12)cation-chloride-cotransporters (CCCs):Na^(+)/K^(+)/Cl^(-)co-transporter (NKCC1) and K^(+)/Cl^(-)cotransporter (KCC2),that respectively cause an influx and efflux of Cl^(-).Recent works have found altered expression and/or activity of either of these co-transporters in SCN neurons and have been associated with circadian rhythms.In this review,we summarize and discuss the role of CCCs in circadian rhythms,and highlight these recent advances which attest to CCC’s growing potential as strong research and therapeutic targets.
文摘Currently, hepatitis B virus(HBV), upon attaching to human hepatocytes, is considered to interact first with heparan sulfate proteoglycan(HSPG) via an antigenic loop of HBV envelope S protein. Then, it is promptly transferred to the sodium taurocholate cotransporting polypeptide(NTCP) via the myristoylated N-terminal sequence of pre-S1 region(from Gly-2 to Gly-48, HBV genotype D), and it finally enters the cell by endocytosis. However, it is not clear how HSPG passes HBV to NTCP and how NTCP contributes to the cellular entry of HBV. Owing to the poor availability and the difficulty of manipulations, including fluorophore encapsulation, it has been nearly impossible to perform biochemical and cytochemical analyses using a substantial amount of HBV. A bio-nanocapsule(BNC), which is a hollow nanoparticle consisting of HBV envelope L protein, was efficiently synthesized in Saccharomyces cerevisiae. Since BNC could encapsulate payloads(drugs, genes, proteins) and specifically enter human hepatic cells utilizing HBV-derived infection machinery, it could be used as a model of HBV infection to elucidate the early infection machinery. Recently, it was demonstrated that the N-terminal sequence of pre-S1 region(from Asn-9 to Gly-24) possesses low p H-dependent fusogenic activity, which might play a crucial role in the endosomal escape of BNC payloads and in the uncoating process of HBV. In this minireview, we describe a model in which each domain of the HBV L protein contributes to attachment onto human hepatic cells through HSPG, initiation of endocytosis, interaction with NTCP in endosomes, and consequent provocation of membrane fusion followed by endosomal escape.
基金Yunnan Science Foundation Project,No.2019-81960102.
文摘BACKGROUND Sodium taurocholate cotransport polypeptide(NTCP)deficiency disease is a genetic metabolic disorder due to mutations in the SLC10A1 gene and impaired bile acid salt uptake by the basolateral membrane transport protein NTCP in hepatocytes.A variety of clinical manifestations and genetic mutation loci have been reported for this disease.However,specific therapeutic measures are lacking,and the long-term effects are unknown.CASE SUMMARY An infant with elevated bile acids and behavioral neurodevelopmental delay failed to respond to bile acid-lowering therapy.Genetic testing for metabolic liver disease revealed that the child had NTCP deficiency due to the SLC10A1 mutation:c.422dupA(p.Y141X),which is a novel mutation site.The current followup revealed a gradual decrease in bile acid levels after 1 year of age,but the child still had behavioral neurodevelopmental delays.CONCLUSION The clinical manifestations,genetic characteristics,treatment and long-term prognosis due to NTCP deficiency remain poorly defined and need to be further confirmed by more studies and reports.
基金Supported by Grants-in-Aid for Young Scientists(B),NO.22791295,NO.23791557,and NO.24791440a Grant-in-Aid for Scientific Research(C),NO.22591464 and NO.24591957,from the Japan Society for the Promotion of Science
文摘AIM: To investigate the role of Na<sup>+</sup>/K<sup>+</sup>/2Cl<sup>-</sup> cotransporter 1 (NKCC1) in the regulation of genes involved in cell cycle progression and the clinicopathological significance of its expression in esophageal squamous cell carcinoma (ESCC).
文摘The beneficial cardiorenal outcomes of sodium-glucose cotransporter 2 inhibitors(SGLT2i)in patients with type 2 diabetes mellitus(T2DM)have been substantiated by multiple clinical trials,resulting in increased interest in the multifarious pathways by which their mechanisms act.The principal effect of SGLT2i(-flozin drugs)can be appreciated in their ability to block the SGLT2 protein within the kidneys,inhibiting glucose reabsorption,and causing an associated osmotic diuresis.This ameliorates plasma glucose elevations and the negative cardiorenal sequelae associated with the latter.These include aberrant mitochondrial metabolism and oxidative stress burden,endothelial cell dysfunction,pernicious neurohormonal activation,and the development of inimical hemodynamics.Positive outcomes within these domains have been validated with SGLT2i administration.However,by modulating the sodium-glucose cotransporter in the proximal tubule(PT),SGLT2i consequently promotes sodium-phosphate cotransporter activity with phosphate retention.Phosphatemia,even at physiologic levels,poses a risk in cardiovascular disease burden,more so in patients with type 2 diabetes mellitus(T2DM).There also exists an association between phosphatemia and renal impairment,the latter hampering cardiovascular function through an array of physiologic roles,such as fluid regulation,hormonal tone,and neuromodulation.Moreover,increased phosphate flux is associated with an associated increase in fibroblast growth factor 23 levels,also detrimental to homeostatic cardiometabolic function.A contemporary commentary concerning this notion unifying cardiovascular outcome trial data with the translational biology of phosphate is scant within the literature.Given the apparent beneficial outcomes associated with SGLT2i administration notwithstanding negative effects of phosphatemia,we discuss in this review the effects of phosphate on the cardiometabolic status in patients with T2DM and cardiorenal disease,as well as the mechanisms by which SGLT2i counteract or overcome them to achieve their net effects.Content drawn to develop this conversation begins with proceedings in the basic sciences and works towards clinical trial data.
文摘Bumetanide has been shown to lessen cerebral edema and reduce the infarct area in the acute stage of cerebral ischemia. Few studies focus on the effects of bumetanide on neuroprotection and neurogenesis in the chronic stage of cerebral ischemia. We established a rat model of cerebral ischemia by injecting endothelin-1 in the left cortical motor area and left corpus striatum. Seven days later, bumetanide 200 μg/kg/day was injected into the lateral ventricle for 21 consecutive days with a mini-osmotic pump. Results demonstrated that the number of neuroblasts cells and the total length of dendrites increased, escape latency reduced, and the number of platform crossings increased in the rat hippocampal dentate gyrus in the chronic stage of cerebral ischemia. These findings suggest that bumetanide promoted neural precursor cell regeneration, dendritic development and the recovery of cognitive function, and protected brain tissue in the chronic stage of ischemia.
文摘Sodium-glucose cotransporter 2(SGLT2)inhibitors have gained momentum as the latest class of antidiabetic agents for improving glycemic control.Large-scale clinical trials have reported that SGLT2 inhibitors reduced cardiovascular outcomes,especially hospitalization for heart failure in patients with type 2 diabetes mellitus who have high risks of cardiovascular disease.Accumulating evidence has indicated that beneficial effects can be observed regardless of the presence or absence of type 2 diabetes mellitus.Accordingly,the Food and Drug Administration approved these agents specifically for treating patients with heart failure and a reduced ejection fraction.It has been concluded that canagliflozin,dapagliflozin,empagliflozin,or ertugliflozin can be recommended for preventing hospitalization associated with heart failure in patients with type 2 diabetes and established cardiovascular disease or those at high cardiovascular risk.In the present review,we explore the available evidence on SGLT2 inhibitors in terms of the cardioprotective effects,potential mechanisms,and ongoing clinical trials that may further clarify the cardiovascular effects of the agents.
文摘Fulminant type 1 diabetes mellitus(FT1DM)is a subtype of type 1 diabetes mellitus characterized by an abrupt onset and a rapid and complete functional loss of isletβcells.It is a very rare disease generally associated with ketoacidosis and the absence of circulating pancreatic islet-related autoantibodies.Diabetic ketoacidosis with normal blood glucose levels has been reported during sodiumglucose co-transporter 2(SGLT2)inhibitor therapy.CASE SUMMARY The patient was a 43-year-old woman that consulted a medical practitioner for malaise,thirst,and vomiting.Blood analysis showed high blood glucose levels(428 mg/dL),a mild increase of hemoglobin A1c(6.6%),and increased ketone bodies in urine.The patient was diagnosed with type 2 diabetes mellitus.The patient was initially treated with insulin,which was subsequently changed to an oral SGLT2 inhibitor.Antibodies to glutamic acid decarboxylase were negative.Four days after receiving oral SGLT2 inhibitor,she consulted at Mie University Hospital,complaining of fatigue and vomiting.Laboratory analysis revealed diabetic ketoacidosis with almost normal blood glucose levels.The endogenous insulin secretion was markedly low,and the serum levels of islet-related autoantibodies were undetectable.We made the diagnosis of FT1DM with concurrent SGLT2 inhibitor-associated euglycemic diabetic ketoacidosis.The patient's general condition improved after therapy with intravenous insulin and withdrawal of oral medication.She was discharged on day 14 with an indication of multiple daily insulin therapy.CONCLUSION This patient is a rare case of FT1DM that developed SGLT2 inhibitor-associated diabetic ketoacidosis with almost normal blood glucose levels.This case report underscores the importance of considering the diagnosis of FT1DM in patients with negative circulating autoantibodies and a history of hyperglycemia that subsequently develop euglycemic diabetic ketoacidosis following treatment with a SGLT2 inhibitor.