Cotton breeding for the development of early-maturing varieties is an effective way to improve multiple cropping indexes and alleviate the conflict between grains and cotton in the cultivated fields in China.In the pr...Cotton breeding for the development of early-maturing varieties is an effective way to improve multiple cropping indexes and alleviate the conflict between grains and cotton in the cultivated fields in China.In the present study,we aimed to identify upland cotton quantitative trait loci(QTLs)and candidate genes related to early-maturity traits,including whole growth period(WGP),flowering timing(FT),node of the first fruiting branch(NFFB),height of the node of the first fruiting branch(HNFFB),and plant height(PH).An early-maturing variety,CCRI50,and a latematuring variety,Guoxinmian 11,were crossed to obtain biparental populations.These populations were used to map QTLs for the early-maturity traits for two years(2020 and 2021).With BSA-seq analysis based on the data of population 2020,the candidate regions related to early maturity were found to be located on chromosome D03.We then developed 22 polymorphic insertions or deletions(InDel)markers to further narrow down the candidate regions,resulting in the detection of five and four QTLs in the 2020 and 2021 populations,respectively.According to the results of QTL mapping,two candidate regions(InDel_G286-InDel_G144 and InDel_G24-InDel_G43)were detected.In these regions,three genes(GH_D03G0451,GH_D03G0649,and GH_D03G1180)have nonsynonymous mutations in their exons and one gene(GH_D03G0450)has SNP variations in the upstream sequence between CCRI50 and Guoxinmian 11.These four genes also showed dominant expression in the floral organs.The expression levels of GH_D03G0451,GH_D03G0649 and GH_D03G1180 were significantly higher in CCRI50 than in Guoxinmian 11 during the bud differentiation stages,while GH_D03G0450 showed the opposite trend.Further functional verification of GH_D03G0451 indicated that the GH_D03G0451-silenced plants showed a delay in the flowering time.The results suggest that these are the candidate genes for cotton early maturity,and they may be used for breeding early-maturity cotton varieties.展开更多
Root system architecture plays an essential role in water and nutrient acquisition in plants,and it is significantly involved in plant adaptations to various environmental stresses.In this study,a panel of 242 cotton ...Root system architecture plays an essential role in water and nutrient acquisition in plants,and it is significantly involved in plant adaptations to various environmental stresses.In this study,a panel of 242 cotton accessions was collected to investigate six root morphological traits at the seedling stage,including main root length(MRL),root fresh weight(RFW),total root length(TRL),root surface area(RSA),root volume(RV),and root average diameter(AvgD).The correlation analysis of the six root morphological traits revealed strong positive correlations of TRL with RSA,as well as RV with RSA and AvgD,whereas a significant negative correlation was found between TRL and AvgD.Subsequently,a genome-wide association study(GWAS)was performed using the root phenotypic and genotypic data reported previously for the 242 accessions using 56,010 single nucleotide polymorphisms(SNPs)from the CottonSNP80K array.A total of 41 quantitative trait loci(QTLs)were identified,including nine for MRL,six for RFW,nine for TRL,12 for RSA,12 for RV and two for AvgD.Among them,eight QTLs were repeatedly detected in two or more traits.Integrating these results with a transcriptome analysis,we identified 17 candidate genes with high transcript values of transcripts per million(TPM)≥30 in the roots.Furthermore,we functionally verified the candidate gene GH_D05G2106,which encodes a WPP domain protein 2in root development.A virus-induced gene silencing(VIGS)assay showed that knocking down GH_D05G2106significantly inhibited root development in cotton,indicating its positive role in root system architecture formation.Collectively,these results provide a theoretical basis and candidate genes for future studies on cotton root developmental biology and root-related cotton breeding.展开更多
Background Light is a critical factor in plant growth and development,particularly in controlled environments.Light-emitting diodes(LEDs)have become a reliable alternative to conventional high pressure sodium(HSP)lamp...Background Light is a critical factor in plant growth and development,particularly in controlled environments.Light-emitting diodes(LEDs)have become a reliable alternative to conventional high pressure sodium(HSP)lamps because they are more efficient and versatile in light sources.In contrast to well-known specialized LED light spectra for vegetables,the appropriate LED lights for crops such as cotton remain unknown.Results In this growth chamber study,we selected and compared four LED lights with varying percentages(26.44%–68.68%)of red light(R,600–700 nm),combined with other lights,for their effects on growth,leaf anatomy,and photosynthesis of cotton seedlings,using HSP lamp as a control.The total photosynthetic photon flux density(PPFD)was(215±2)μmol·m-2·s-1 for all LEDs and HSP lamp.The results showed significant differences in all tested parameters among lights,and the percentage of far red(FR,701–780 nm)within the range of 3.03%–11.86%was positively correlated with plant growth(characterized by leaf number and area,plant height,stem diameter,and total biomass),palisade layer thickness,photosynthesis rate(Pn),and stomatal conductance(Gs).The ratio of R/FR(4.445–11.497)negatively influenced the growth of cotton seedlings,and blue light(B)suppressed stem elongation but increased palisade cell length,chlorophyll content,and Pn.Conclusion The LED 2 was superior to other LED lights and HSP lamp.It had the highest ratio of FR within the total PPFD(11.86%)and the lowest ratio of R/FR(4.445).LED 2 may therefore be used to replace HPS lamp under controlled environments for the study of cotton at the seedling stage.展开更多
Cotton fiber quality is a persistent concern that determines planting benefits and the quality of finished textile products.However,the limitations of measurement instruments have hindered the accurate evaluation of s...Cotton fiber quality is a persistent concern that determines planting benefits and the quality of finished textile products.However,the limitations of measurement instruments have hindered the accurate evaluation of some important fiber characteristics such as fiber maturity,fineness,and neps,which in turn has impeded the genetic improvement and industrial utilization of cotton fiber.Here,12 single fiber quality traits were measured using Advanced Fiber Information System(AFIS)equipment among 383 accessions of upland cotton(Gossypium hirsutum L.).In addition,eight conventional fiber quality traits were assessed by the High Volume Instrument(HVI)System.Genome-wide association study(GWAS),linkage disequilibrium(LD)block genotyping and functional identification were conducted sequentially to uncover the associated elite loci and candidate genes of fiber quality traits.As a result,the previously reported pleiotropic locus FL_D11 regulating fiber length-related traits was identified in this study.More importantly,three novel pleiotropic loci(FM_A03,FF_A05,and FN_A07)regulating fiber maturity,fineness and neps,respectively,were detected based on AFIS traits.Numerous highly promising candidate genes were screened out by integrating RNA-seq and qRT-PCR analyses,including the reported GhKRP6 for fiber length,the newly identified GhMAP8 for maturity and GhDFR for fineness.The origin and evolutionary analysis of pleiotropic loci indicated that the selection pressure on FL_D11,FM_A03 and FF_A05 increased as the breeding period approached the present and the origins of FM_A03 and FF_A05 were traced back to cotton landraces.These findings reveal the genetic basis underlying fiber quality and provide insight into the genetic improvement and textile utilization of fiber in G.hirsutum.展开更多
Background As the most widely cultivated fiber crop,cotton production depends on hybridization to unlock the yield potential of current varieties.A deep understanding of genetic dissection is crucial for the cultivati...Background As the most widely cultivated fiber crop,cotton production depends on hybridization to unlock the yield potential of current varieties.A deep understanding of genetic dissection is crucial for the cultivation of enhanced hybrid plants with desired traits,such as high yield and fine fiber quality.In this study,the general combining ability(GCA)and specific combining ability(SCA)of yield and fiber quality of nine cotton parents(six lines and three testers)and eighteen F1 crosses produced using a line×tester mating design were analyzed.Results The results revealed significant effects of genotypes,parents,crosses,and interactions between parents and crosses for most of the studied traits.Moreover,the effects of both additive and non-additive gene actions played a notably significant role in the inheritance of most of the yield and fiber quality attributes.The F1 hybrids of(Giza 90×Aust)×Giza 86,Uzbekistan 1×Giza 97,and Giza 96×Giza 97 demonstrated superior performance due to their favorable integration of high yield attributes and premium fiber quality characteristics.Path analysis revealed that lint yield has the highest positive direct effect on seed cotton yield,while lint percentage showed the highest negative direct effect on seed cotton yield.Principal component analysis identified specific parents and hybrids associated with higher cotton yield,fiber quality,and other agronomic traits.Conclusion This study provides insights into identifying potential single-and three-way cross hybrids with superior cotton yield and fiber quality characteristics,laying a foundation for future research on improving fiber quality in cotton.展开更多
Background Chitinase is an enzyme that hydrolyzes chitin,a major component of the exoskeleton of insects,including plant pests like whiteflies.The present study aimed to investigate the expression of chemically synthe...Background Chitinase is an enzyme that hydrolyzes chitin,a major component of the exoskeleton of insects,including plant pests like whiteflies.The present study aimed to investigate the expression of chemically synthesized barley ch1 and chi2 genes in cotton(Gossypium hirsutum)through Agrobacterium-mediated transformation.Fifty-five putative transgenic cotton plants were obtained,out of which fifteen plants successfully survived and were shifted to the field.Using gene-specific primers,amplification of 447 bp and 401 bp fragments confirmed the presence of the ch1 and chi2 genes in five transgenic cotton plants of the T0 generation.These five plants were further evalu-ated for their mRNA expression levels.The T0 transgenic cotton plants with the highest mRNA expression level and better yield performance in field,were selected to raise their subsequent progenies.Results The T1 cotton plants showed the highest mRNA expression levels of 3.5-fold in P10(2)for the ch1 gene and 3.7-fold in P2(1)for the chi2 gene.Fluorescent in situ hybridization(FISH)confirmed a single copy number of ch1 and chi2(hemizygous)on chromosome no.6.Furthermore,the efficacy of transgenes on whitefly was evaluated through an insect bioassay,where after 96 h of infestation,mortality rates of whitefly were calculated to be 78%–80%in transgenic cotton plants.The number of eggs on transgenic cotton plants were calculated to be 0.1%–0.12 per plant compared with the non-transgenic plants where egg number was calculated to be 0.90–1.00 per plant.Conclusion Based on these findings,it can be concluded that the chemically synthesized barley chitinase genes(ch1 and chi2)have the potential to be effective against insects with chitin exoskeletons,including whiteflies.The transgenic cotton plants expressing these genes showed increased resistance to whiteflies,resulting in reduced egg numbers and higher mortality rates.展开更多
Background Cotton(Gossypium hirsutum L.)is one of the most significant fibre and cash crops and plays an important role in Indian industrial and agricultural economies.However,over the years quantity and quality have ...Background Cotton(Gossypium hirsutum L.)is one of the most significant fibre and cash crops and plays an important role in Indian industrial and agricultural economies.However,over the years quantity and quality have been hampered by the pest leafhopper.Leafhopper alone has been shown to cause yield losses of up to 40%.In this study,screening and evaluation were performed to identify and categorize 100 cotton genotypes along with 5 checks as resistant,moderately resistant,sensitive and highly sensitive to leafhoppers.Results A total of hundred genotypes were evaluated along with five checks for leafhopper resistance.Based on the screening results,a total of 19 genotypes were resistant to leafhoppers,which was on par with the findings of the check KC 3.The contents of total soluble sugar,total soluble protein,and total free amino acids were significantly positively correlated with the mean grade,whereas total phenols content and trichome density were significantly negatively correlated with the susceptibility grade.However,based on screening and biochemical analysis,the genotypes KC 2,JR-23,Samaru-26-T,D 4,TCH 1728,RS 253,and B-61-1862 exhibited high resistance to leafhopper.Conclusion According to the findings of this study,choosing genotypes with high total phenolics content together with high trichome density and low contents of total soluble sugar,total soluble protein,and free amino acids may aid in the development of resistant genotypes.展开更多
Background Globally,the cultivation of cotton is constrained by its tendency for extended periods of growth.Early maturity plays a potential role in rainfed-based multiple cropping system especially in the current era...Background Globally,the cultivation of cotton is constrained by its tendency for extended periods of growth.Early maturity plays a potential role in rainfed-based multiple cropping system especially in the current era of climate change.In the current study,a set of 20 diverse Gossypium hirsutum genotypes were evaluated in two crop seasons with three planting densities and assessed for 11 morphological traits related to early maturity.The study aimed to identify genotype(s)that mature rapidly and accomplish well under diverse environmental conditions based on the two robust multivariate techniques called multi-trait stability index(MTSI)and multi-trait genotype-ideotype distance index(MGIDI).Results MTSI analysis revealed that out of the 20 genotypes,three genotypes,viz.,NNDC-30,A-2,and S-32 accomplished well in terms of early maturity traits in two seasons.Furthermore,three genotypes were selected using MGIDI method for each planting densities with a selection intensity of 15%.The strengths and weaknesses of the genotypes selected based on MGIDI method highlighted that the breeders could focus on developing early-maturing genotypes with specific traits such as days to first flower and boll opening.The selected genotypes exhibited positive genetic gains for traits related to earliness and a successful harvest during the first and second pickings.However,there were negative gains for traits related to flowering and boll opening.Conclusion The study identified three genotypes exhibiting early maturity and accomplished well under different planting densities.The multivariate methods(MTSI and MGIDI)serve as novel approaches for selecting desired genotypes in plant breeding programs,especially across various growing environments.These methods offer exclusive benefits and can easily construe and minimize multicollinearity issues.展开更多
Background Cotton fiber is a model tissue for studying microtubule-associated proteins(MAPs).The Xklp2(TPX2)proteins that belong to the novel MAPs member mainly participate in the formation and development of microtub...Background Cotton fiber is a model tissue for studying microtubule-associated proteins(MAPs).The Xklp2(TPX2)proteins that belong to the novel MAPs member mainly participate in the formation and development of microtubule(MT).However,there is a lack of studies concerning the systematic characterization of the TPX2 genes family in cotton.Therefore,the identification and portrayal of G.hirsutum TPX2 genes can provide key targets for molecular manipula-tion in the breeding of cotton fiber improvement.Result In this study,TPX2 family genes were classified into two distinct subclasses TPXLs and MAP genes WAVE DAMP-ENED2-LIKE(WDLs)and quite conservative in quantity.GhWDL3 was significantly up-regulated in 15 days post anthe-sis fibers of ZRI-015(an upland cotton with longer and stronger fiber).GhWDL3 promotes all stem hairs to become straight when overexpressed in Arabidopsis,which may indirectly regulate cotton fiber cell morphology during fiber development.Virus induced gene silencing(VIGS)results showed that GhWDL3 inhibited fiber cell elongation at fiber development periods through regulating the expression of cell wall related genes.Conclusion These results reveal that GhWDL3 regulated cotton fiber cell elongation and provide crucial information for the further investigation in the regulatory mechanisms/networks of cotton fiber length.展开更多
Background High temperature stress at peak flowering stage of cotton is a major hindrance for crop potential.This study aimed to increase genetic divergence regarding heat tolerance in newly developed cultivars and hy...Background High temperature stress at peak flowering stage of cotton is a major hindrance for crop potential.This study aimed to increase genetic divergence regarding heat tolerance in newly developed cultivars and hybrids.Fifty cotton genotypes and 40 F1(hybrids)were tested under field conditions following the treatments,viz.,high temperature stress and control at peak flowering stage in August and October under April and June sowing,respectively.Results The mean squares revealed significant differences among genotypes,treatments,genotype×treatment for relative cell injury,chlorophyll contents,canopy temperature,boll retention and seed cotton yield per plant.The genetic diversity among 50 genotypes was analyzed through cluster analysis and heat susceptibility index(HSI).The heat tolerant genotypes including FH-Noor,NIAB-545,FH-466,FH-Lalazar,FH-458,NIAB-878,IR-NIBGE-8,Weal-AGShahkar,and heat sensitive,i.e.,CIM-602,Silky-3,FH-326,SLH-12 and FH-442 were hybridized in line×tester fashion to produce F1 populations.The breeding materials’populations(40 F1)revealed higher specific combining ability variances along with dominance variances,decided the non-additive type gene action for all the traits.The best general combining ability effects for most of the traits were displayed by the lines,i.e.,FH-Lalazar,NIAB-878 along with testers FH-326 and Silky-3.Specific combining ability effects and better-parent heterosis were showed by the crosses,viz.,FH-Lalazar×Silky-3,FH-Lalazar×FH-326,NIAB-878×Silky-3,and NIAB-878×FH-326 for seed cotton yield and yield contributing traits under high temperature stress.Conclusion Heterosis breeding should be carried out in the presence of non-additive type gene action for all the studied traits.The best combiner parents with better-parent heterosis may be used in crossing program to develop high yielding cultivars,and hybrids for high temperature stress tolerance.展开更多
Cotton (Gossypium hirsutum L.) is an importantfiber cash crop,but its root traits related to phosphorus (P) acquisition,including mycorrhizal root traits,are poorly understood.Eight cotton varieties bred in northweste...Cotton (Gossypium hirsutum L.) is an importantfiber cash crop,but its root traits related to phosphorus (P) acquisition,including mycorrhizal root traits,are poorly understood.Eight cotton varieties bred in northwestern China that were released between 1950 and 2013 were grown in pots with or without one arbuscular mycorrhizal fungal (AMF) species(Funneliformis mosseae) at three P supply levels (0,50 and 300 mg P as KH_(2)PO_(4)kg^(-1)).Eleven root traits were measured and calculated after 7 wk of growth.The more recent accessions had smaller root diameters,acquired less P and produced less biomass,indicating an (inadvertent) varietal selection for thinner roots that provided less cortical space for AMF,which then increased the need for a high P fertilizer level.At the two lower P levels,the mycorrhizal plants acquired more P and produced more biomass than non-mycorrhizal plants (3.2 vs.0.9 mg P per plant;1.8 vs.0.9 g biomass per plant at P_(0);14.5 vs.1.7 mg P per plant;and 4.7 vs.1.6 g biomass per plant at P_(50)).At the highest P level,the mycorrhizal plants acquired more P than non-mycorrhizal plants (18.8 vs.13.4 mg per P plant),but there was no difference in biomass (6.2 vs.6.3 g per plant).At the intermediate P level,root diameter was significantly positively correlated with shoot biomass,P concentration and the P content of mycorrhizal plants.The results of our study support the importance of the outsourcing model of P acquisition in the root economics space framework.Inadvertent varietal selection in the last decades,resulting in thinner roots and a lower benefit from AMF,has led to a lower productivity of cotton varieties at moderate P supply (i.e.,when mycorrhizal,the average biomass of older varieties 5.0 g per plant vs.biomass of newer varieties 4.4 g per plant),indicating the need to rethink cotton breeding efforts in order to achieve high yields without very high P input.One feasible way to solve the problem of inadvertent varietal selection for cotton is to be aware of the trade-offs between the root do-it-yourself strategy and the outsourcing towards AMF strategy,and to consider both morphological and mycorrhizal root traits when breeding cotton varieties.展开更多
During the boll formation stage,cotton bolls exhibit the lowest expression of Bacillus thuringiensis(Bt)insecticidal proteins.Resistance to insects varies notably among different organs,which poses challenges for cont...During the boll formation stage,cotton bolls exhibit the lowest expression of Bacillus thuringiensis(Bt)insecticidal proteins.Resistance to insects varies notably among different organs,which poses challenges for controlling cotton bollworms.Consequently,an experimental strategy was designed in the 2020-2021 cotton growing season to coordinate the enhancement of protein synthesis and the attenuation of degradation.Two Bt cultivars of Gossypium hirsutum,namely the hybrid Sikang 3 and the conventional Sikang 1,were used as test materials.Three treatments were applied at the peak flowering period:CK(the control),T1(amino acids),and T2(amino acids and EDTA).The results show that,in comparison to the CK group,the Bt protein contents were significantly increased in both cotton bolls and their subtending leaves under the T1 and T2 treatments.The maximum levels of increase observed were 67.5%in cotton bolls and 21.7%in leaves.Moreover,the disparity in Bt protein content between cotton bolls and their subtending leaves notably decreased by 31.2%.Correlation analysis suggested that the primary physiological mechanisms for augmenting Bt protein content involve increased protein synthesis and reduced protein catabolism,which are independent of Bt gene expression levels.Stepwise regression and path analysis revealed that elevating the soluble protein content and transaminase activity,while reducing the catabolic enzyme activities,are instrumental in enhancing the Bt protein content.Consequently,the coordinated application of amino acids and EDTA emerges as a strategy that can improve the overall resistance of Bt cotton and mitigate the spatiotemporal variations in Bt toxin concentrations in both cotton bolls and leaves.展开更多
Cotton is one of the most important economic crops in the world,and it is a major source of fiber in the textile industry.Strigolactones(SLs)are a class of carotenoid-derived plant hormones involved in many processes ...Cotton is one of the most important economic crops in the world,and it is a major source of fiber in the textile industry.Strigolactones(SLs)are a class of carotenoid-derived plant hormones involved in many processes of plant growth and development,although the functions of SL in fiber development remain largely unknown.Here,we found that the endogenous SLs were significantly higher in fibers at 20 days post-anthesis(DPA).Exogenous SLs significantly increased fiber length and cell wall thickness.Furthermore,we cloned three key SL biosynthetic genes,namely GhD27,GhMAX3,and GhMAX4,which were highly expressed in fibers,and subcellular localization analyses revealed that GhD27,GhMAX3,and GhMAX4 were localized in the chloroplast.The exogenous expression of GhD27,GhMAX3,and GhMAX4 complemented the physiological phenotypes of d27,max3,and max4 mutations in Arabidopsis,respectively.Knockdown of GhD27,GhMAX3,and GhMAX4 in cotton resulted in increased numbers of axillary buds and leaves,reduced fiber length,and significantly reduced fiber thickness.These findings revealed that SLs participate in plant growth,fiber elongation,and secondary cell wall formation in cotton.These results provide new and effective genetic resources for improving cotton fiber yield and plant architecture.展开更多
The germination process of seeds is influenced by the interplay between two opposing factors,pectin methylesterase(PME)and pectin methylesterase inhibitor(PMEI),which collectively regulate patterns of pectin methylest...The germination process of seeds is influenced by the interplay between two opposing factors,pectin methylesterase(PME)and pectin methylesterase inhibitor(PMEI),which collectively regulate patterns of pectin methylesterification.Despite the recognized importance of pectin methylesterification in seed germination,the specific mechanisms that govern this process remain unclear.In this study,we demonstrated that the overexpression of GhPMEI53is associated with a decrease in PME activity and an increase in pectin methylesterification.This leads to seed cell wall softening,which positively regulates cotton seed germination.AtPMEI19,the homologue in Arabidopsis thaliana,plays a similar role in seed germination to GhPMEI53,indicating a conserved function and mechanism of PMEI in seed germination regulation.Further studies revealed that GhPMEI53 and AtPMEI19 directly contribute to promoting radicle protrusion and seed germination by inducing cell wall softening and reducing mechanical strength.Additionally,the pathways of abscicic acid(ABA)and gibberellin(GA)in the transgenic materials showed significant changes,suggesting that GhPMEI53/AtPMEI19-mediated pectin methylesterification serves as a regulatory signal for the related phytohormones involved in seed germination.In summary,GhPMEI53 and its homologs alter the mechanical properties of cell walls,which influence the mechanical resistance of the endosperm or testa.Moreover,they impact cellular phytohormone pathways(e.g.,ABA and GA)to regulate seed germination.These findings enhance our understanding of pectin methylesterification in cellular morphological dynamics and signaling transduction,and contribute to a more comprehensive understanding of the PME/PMEI gene superfamily in plants.展开更多
Leaves are the main organ for photosynthesis and organic synthesis in cotton.Leaf shape has important effects on photosynthetic efficiency and canopy formation,thereby affecting cotton yield.Previous studies have show...Leaves are the main organ for photosynthesis and organic synthesis in cotton.Leaf shape has important effects on photosynthetic efficiency and canopy formation,thereby affecting cotton yield.Previous studies have shown that LMI1(LATE MERISTEM IDENTITY1)is the main gene regulating leaf shape.In this study,the LMI1 gene was inserted into the 35S promoter expression vector,and cotton plants overexpressing LMI1(OE)were obtained through genetic transformation.Statistical analysis of the biological traits of the T_(1) and T_(2) populations showed that compared to the wild type(WT),OE plants had significantly larger leaves,thicker stems and significantly greater dry weight.Furthermore,plant sections of the main vein and petiole showed that the numbers of cells in those tissues of OE plants were significantly greater.In addition,RNA-seq analysis revealed the differential expression of genes related to gibberellin synthesis and NAC gene family(genes containing the NAC domain)between the OE and WT plants,suggesting that LMI1 is involved in secondary wall formation and cell proliferation,which promotes stem thickening.Moreover,Gene Ontology(GO)analysis revealed enrichment in the terms of calcium ion binding,and Kyoto Encyclopedia of Genes and Genomes(KEGG)analysis showed enrichment in the terms of fatty acid degradation,phosphatidylinositol signal transduction system,and c AMP(cyclic adenosine monophosphate)signal pathway.These results suggested that LMI1 OE plants are responsive to gibberellin hormone signals,and have altered messenger signals(c AMP,Ca^(2+))which amplify this function,to promote stronger aboveground vegetative growth.This study found the LMI1 greatly increased the vegetative growth in cotton,which is the basic requirement for higher yield.展开更多
Pectin is a major constituent of the plant cell wall.Pectate lyase(PEL,EC 4.2.2.2)uses anti-β-elimination chemistry to cleave theα-1,4 glycosidic linkage in the homogalacturonan region of pectin.However,limited info...Pectin is a major constituent of the plant cell wall.Pectate lyase(PEL,EC 4.2.2.2)uses anti-β-elimination chemistry to cleave theα-1,4 glycosidic linkage in the homogalacturonan region of pectin.However,limited information is available on the comprehensive and evolutionary analysis of PELs in the Malvaceae.In this study,we identified 597PEL genes from 10 Malvaceae species.Phylogenetic and motif analyses revealed that these PELs are classified into six subfamilies:Clades I,II,III,IV,Va,and Vb.The two largest subfamilies,Clades I and II,contained 237 and222 PEL members,respectively.The members of Clades Va and Vb only contained four or five motifs,far fewer than the other subfamilies.Gene duplication analysis showed that segmental duplication played a crucial role in the expansion of the PEL gene family in Gossypium species.The PELs from Clades I,IV,Va,and Vb were expressed during the fiber elongation stage,but nearly all PEL genes from Clades II and III showed no expression in any of the investigated fiber developmental stages.We further performed single-gene haplotype association analysis in 2,001G.hirsutum accessions and 229 G.barbadense accessions.Interestingly,14 PELs were significantly associated with fiber length and strength traits in G.barbadense with superior fiber quality,while only eight GhPEL genes were found to be significantly associated with fiber quality traits in G.hirsutum.Our findings provide important information for further evolutionary and functional research on the PEL gene family members and their potential use for fiber quality improvement in cotton.展开更多
Drought stress impairs crop growth and development.BEL1-like family transcription factors may be involved in plant response to drought stress,but little is known of the molecular mechanism by which these proteins regu...Drought stress impairs crop growth and development.BEL1-like family transcription factors may be involved in plant response to drought stress,but little is known of the molecular mechanism by which these proteins regulate plant response and defense to drought stress.Here we show that the BEL1-like transcription factor GhBLH5-A05 functions in cotton(Gossypium hirsutum)response and defense to drought stress.Expression of GhBLH5-A05 in cotton was induced by drought stress.Overexpression of GhBLH5-A05 in both Arabidopsis and cotton increased drought tolerance,whereas silencing GhBLH5-A05 in cotton resulted in elevated sensitivity to drought stress.GhBLH5-A05 binds to cis elements in the promoters of GhRD20-A09 and GhDREB2C-D05 to activate the expression of these genes.GhBLH5-A05 interacted with the KNOX transcription factor GhKNAT6-A03.Co-expression of GhBLH5-A05 and GhKNAT6-A03 increased the transcription of GhRD20-A09 and GhDREB2C-D05.We conclude that GhBLH5-A05 acts as a regulatory factor with GhKNAT6-A03 functioning in cotton response to drought stress by activating the expression of the drought-responsive genes GhRD20-A09 and GhDREB2C-D05.展开更多
This study investigates the influence of electropolymerization conditions on the deposition of polypyrrole(PPy)onto cotton-derived carbon fiber(CF)modified with reduced graphene oxide(rGO)for supercapacitors applicati...This study investigates the influence of electropolymerization conditions on the deposition of polypyrrole(PPy)onto cotton-derived carbon fiber(CF)modified with reduced graphene oxide(rGO)for supercapacitors applications using an experimental/theorical approach.The surface modification of CF by rGO and/or by PPy electrodeposited at 10,25 and 50 mV s^(-1) was thoroughly examined physicochemical and electrochemically.Composite electrodes comprising CF-rGo-PPy,synthesized via electropolymerization at 25 mV s^(-1),demonstrated a remarkable increase in capacitance,showcasing~742 F g^(-1) compared to 153 F g^(-1) for CF.SEM,N_(2)-surface area,XPS,and TD-DFT approach revealed that the higher capacitance observed in CF-rGo-PPy electrodes underscores the influence of morphology and charged nitrogen species on the electrochemical performance of these modified electrodes.Notably,this electrode material achieves a specific capacitance retention of~96%of their initial capacitance after 10000 cycles at 0.5 A g^(-1) measured in a two-electrodes cell configuration.This work also discusses the influence of the scan rate used for pyrrole electropolymerization on the pseudocapacitance contribution of PPy and its possible effect on the porosity of the material.These results highlight the importance of appropriate electropolymerization conditions that allow obtaining the synergistic effect between CF,rGO and PPy.展开更多
The exogenous application of melatonin by the root drenching method is an effective way to improve crop drought resistance.However,the optimal concentration of melatonin by root drenching and the physiological mechani...The exogenous application of melatonin by the root drenching method is an effective way to improve crop drought resistance.However,the optimal concentration of melatonin by root drenching and the physiological mechanisms underlying melatonin-induced drought tolerance in cotton(Gossypium hirsutum L.)roots remain elusive.This study determined the optimal concentration of melatonin by root drenching and explored the protective effects of melatonin on cotton roots.The results showed that 50μmol L-1 melatonin was optimal and significantly mitigated the inhibitory effect of drought on cotton seedling growth.Exogenous melatonin promoted root development in drought-stressed cotton plants by remarkably increasing the root length,projected area,surface area,volume,diameter,and biomass.Melatonin also mitigated the drought-weakened photosynthetic capacity of cotton and regulated the endogenous hormone contents by regulating the relative expression levels of hormone-synthesis genes under drought stress.Melatonin-treated cotton seedlings maintained optimal enzymatic and non-enzymatic antioxidant capacities,and produced relatively lower levels of reactive oxygen species and malondialdehyde,thus reducing the drought stress damage to cotton roots(such as mitochondrial damage).Moreover,melatonin alleviated the yield and fiber length declines caused by drought stress.Taken together,these findings show that root drenching with exogenous melatonin increases the cotton yield by enhancing root development and reducing the root damage induced by drought stress.In summary,these results provide a foundation for the application of melatonin in the field by the root drenching method.展开更多
Results The population had large variations for lint yield,fibre properties,predicted yarn properties,and composite fibre quality values.Lint yield with all fibre quality traits was not correlated.When the selection w...Results The population had large variations for lint yield,fibre properties,predicted yarn properties,and composite fibre quality values.Lint yield with all fibre quality traits was not correlated.When the selection was conducted first to keep those with improved fibre quality,and followed for high yields,a large proportion in the resultant populations was the same between selections based on Cottonspec predicted yarn quality and HVI-measured fibre properties.They both exceeded the selection based on FQI and Background The approach of directly testing yarn quality to define fibre quality breeding objectives and progress the selection is attractive but difficult when considering the need for time and labour.The question remains whether yarn prediction tools from textile research can serve as an alternative.In this study,using a dataset from three seasons of field testing recombinant inbred line population,Cottonspec,a software developed by the Commonwealth Scientific and Industrial Research Organisation(CSIRO)for predicting ring spun yarn quality from fibre properties measured by High Volume Instrument(HVI),was used to select improved fibre quality and lint yield in the population.The population was derived from an advanced generation inter-crossing of four CSIRO conventional commercial varieties.The Cottonspec program was able to provide an integrated index of the fibre qualities affecting yarn properties.That was compared with selection based on HVI-measured fibre properties,and two composite fibre quality variables,namely,fibre quality index(FQI),and premium and discount(PD)points.The latter represents the net points of fibre length,strength,and micronaire based on the Premiums and Discounts Schedule used in the market while modified by the inclusion of elongation.PD points.Conclusions The population contained elite segregants with improved yield and fibre properties,and Cottonspec predicted yarn quality is useful to effectively capture these elites.There is a need to further develop yarn quality prediction tools through collaborative efforts with textile mills,to draw better connectedness between fibre and yarn quality.This connection will support the entire cotton value chain research and evolution.展开更多
基金funded by the Natural Science Foundation of Xinjiang Uygur Autonomous Region,China(2022D01B222)the China Agriculture Research System(CARS-15-06)the Key R&D Project of Eight Division of Xinjiang Production and Construction Corps,China(2021NY01)。
文摘Cotton breeding for the development of early-maturing varieties is an effective way to improve multiple cropping indexes and alleviate the conflict between grains and cotton in the cultivated fields in China.In the present study,we aimed to identify upland cotton quantitative trait loci(QTLs)and candidate genes related to early-maturity traits,including whole growth period(WGP),flowering timing(FT),node of the first fruiting branch(NFFB),height of the node of the first fruiting branch(HNFFB),and plant height(PH).An early-maturing variety,CCRI50,and a latematuring variety,Guoxinmian 11,were crossed to obtain biparental populations.These populations were used to map QTLs for the early-maturity traits for two years(2020 and 2021).With BSA-seq analysis based on the data of population 2020,the candidate regions related to early maturity were found to be located on chromosome D03.We then developed 22 polymorphic insertions or deletions(InDel)markers to further narrow down the candidate regions,resulting in the detection of five and four QTLs in the 2020 and 2021 populations,respectively.According to the results of QTL mapping,two candidate regions(InDel_G286-InDel_G144 and InDel_G24-InDel_G43)were detected.In these regions,three genes(GH_D03G0451,GH_D03G0649,and GH_D03G1180)have nonsynonymous mutations in their exons and one gene(GH_D03G0450)has SNP variations in the upstream sequence between CCRI50 and Guoxinmian 11.These four genes also showed dominant expression in the floral organs.The expression levels of GH_D03G0451,GH_D03G0649 and GH_D03G1180 were significantly higher in CCRI50 than in Guoxinmian 11 during the bud differentiation stages,while GH_D03G0450 showed the opposite trend.Further functional verification of GH_D03G0451 indicated that the GH_D03G0451-silenced plants showed a delay in the flowering time.The results suggest that these are the candidate genes for cotton early maturity,and they may be used for breeding early-maturity cotton varieties.
基金supported by the Jiangsu Natural Science Foundation,China(BK20231468)the Fundamental Research Funds for the Central Universities,China(ZJ24195012)+3 种基金the National Natural Science Foundation in China(31871668)the Jiangsu Key R&D Program,China(BE2022384)the Xinjiang Uygur Autonomous Region Science and Technology Support Program,China(2021E02003)the Jiangsu Collaborative Innovation Center for Modern Crop Production Project,China(No.10)。
文摘Root system architecture plays an essential role in water and nutrient acquisition in plants,and it is significantly involved in plant adaptations to various environmental stresses.In this study,a panel of 242 cotton accessions was collected to investigate six root morphological traits at the seedling stage,including main root length(MRL),root fresh weight(RFW),total root length(TRL),root surface area(RSA),root volume(RV),and root average diameter(AvgD).The correlation analysis of the six root morphological traits revealed strong positive correlations of TRL with RSA,as well as RV with RSA and AvgD,whereas a significant negative correlation was found between TRL and AvgD.Subsequently,a genome-wide association study(GWAS)was performed using the root phenotypic and genotypic data reported previously for the 242 accessions using 56,010 single nucleotide polymorphisms(SNPs)from the CottonSNP80K array.A total of 41 quantitative trait loci(QTLs)were identified,including nine for MRL,six for RFW,nine for TRL,12 for RSA,12 for RV and two for AvgD.Among them,eight QTLs were repeatedly detected in two or more traits.Integrating these results with a transcriptome analysis,we identified 17 candidate genes with high transcript values of transcripts per million(TPM)≥30 in the roots.Furthermore,we functionally verified the candidate gene GH_D05G2106,which encodes a WPP domain protein 2in root development.A virus-induced gene silencing(VIGS)assay showed that knocking down GH_D05G2106significantly inhibited root development in cotton,indicating its positive role in root system architecture formation.Collectively,these results provide a theoretical basis and candidate genes for future studies on cotton root developmental biology and root-related cotton breeding.
基金funded by the China Agriculture Research System(CARS-15-16).
文摘Background Light is a critical factor in plant growth and development,particularly in controlled environments.Light-emitting diodes(LEDs)have become a reliable alternative to conventional high pressure sodium(HSP)lamps because they are more efficient and versatile in light sources.In contrast to well-known specialized LED light spectra for vegetables,the appropriate LED lights for crops such as cotton remain unknown.Results In this growth chamber study,we selected and compared four LED lights with varying percentages(26.44%–68.68%)of red light(R,600–700 nm),combined with other lights,for their effects on growth,leaf anatomy,and photosynthesis of cotton seedlings,using HSP lamp as a control.The total photosynthetic photon flux density(PPFD)was(215±2)μmol·m-2·s-1 for all LEDs and HSP lamp.The results showed significant differences in all tested parameters among lights,and the percentage of far red(FR,701–780 nm)within the range of 3.03%–11.86%was positively correlated with plant growth(characterized by leaf number and area,plant height,stem diameter,and total biomass),palisade layer thickness,photosynthesis rate(Pn),and stomatal conductance(Gs).The ratio of R/FR(4.445–11.497)negatively influenced the growth of cotton seedlings,and blue light(B)suppressed stem elongation but increased palisade cell length,chlorophyll content,and Pn.Conclusion The LED 2 was superior to other LED lights and HSP lamp.It had the highest ratio of FR within the total PPFD(11.86%)and the lowest ratio of R/FR(4.445).LED 2 may therefore be used to replace HPS lamp under controlled environments for the study of cotton at the seedling stage.
基金supported by the National Key Research and Development Program of China(2022YFD1200300)the Central Plain Scholar Program,China(234000510004)the National Supercomputing Center in Zhengzhou,China。
文摘Cotton fiber quality is a persistent concern that determines planting benefits and the quality of finished textile products.However,the limitations of measurement instruments have hindered the accurate evaluation of some important fiber characteristics such as fiber maturity,fineness,and neps,which in turn has impeded the genetic improvement and industrial utilization of cotton fiber.Here,12 single fiber quality traits were measured using Advanced Fiber Information System(AFIS)equipment among 383 accessions of upland cotton(Gossypium hirsutum L.).In addition,eight conventional fiber quality traits were assessed by the High Volume Instrument(HVI)System.Genome-wide association study(GWAS),linkage disequilibrium(LD)block genotyping and functional identification were conducted sequentially to uncover the associated elite loci and candidate genes of fiber quality traits.As a result,the previously reported pleiotropic locus FL_D11 regulating fiber length-related traits was identified in this study.More importantly,three novel pleiotropic loci(FM_A03,FF_A05,and FN_A07)regulating fiber maturity,fineness and neps,respectively,were detected based on AFIS traits.Numerous highly promising candidate genes were screened out by integrating RNA-seq and qRT-PCR analyses,including the reported GhKRP6 for fiber length,the newly identified GhMAP8 for maturity and GhDFR for fineness.The origin and evolutionary analysis of pleiotropic loci indicated that the selection pressure on FL_D11,FM_A03 and FF_A05 increased as the breeding period approached the present and the origins of FM_A03 and FF_A05 were traced back to cotton landraces.These findings reveal the genetic basis underlying fiber quality and provide insight into the genetic improvement and textile utilization of fiber in G.hirsutum.
文摘Background As the most widely cultivated fiber crop,cotton production depends on hybridization to unlock the yield potential of current varieties.A deep understanding of genetic dissection is crucial for the cultivation of enhanced hybrid plants with desired traits,such as high yield and fine fiber quality.In this study,the general combining ability(GCA)and specific combining ability(SCA)of yield and fiber quality of nine cotton parents(six lines and three testers)and eighteen F1 crosses produced using a line×tester mating design were analyzed.Results The results revealed significant effects of genotypes,parents,crosses,and interactions between parents and crosses for most of the studied traits.Moreover,the effects of both additive and non-additive gene actions played a notably significant role in the inheritance of most of the yield and fiber quality attributes.The F1 hybrids of(Giza 90×Aust)×Giza 86,Uzbekistan 1×Giza 97,and Giza 96×Giza 97 demonstrated superior performance due to their favorable integration of high yield attributes and premium fiber quality characteristics.Path analysis revealed that lint yield has the highest positive direct effect on seed cotton yield,while lint percentage showed the highest negative direct effect on seed cotton yield.Principal component analysis identified specific parents and hybrids associated with higher cotton yield,fiber quality,and other agronomic traits.Conclusion This study provides insights into identifying potential single-and three-way cross hybrids with superior cotton yield and fiber quality characteristics,laying a foundation for future research on improving fiber quality in cotton.
文摘Background Chitinase is an enzyme that hydrolyzes chitin,a major component of the exoskeleton of insects,including plant pests like whiteflies.The present study aimed to investigate the expression of chemically synthesized barley ch1 and chi2 genes in cotton(Gossypium hirsutum)through Agrobacterium-mediated transformation.Fifty-five putative transgenic cotton plants were obtained,out of which fifteen plants successfully survived and were shifted to the field.Using gene-specific primers,amplification of 447 bp and 401 bp fragments confirmed the presence of the ch1 and chi2 genes in five transgenic cotton plants of the T0 generation.These five plants were further evalu-ated for their mRNA expression levels.The T0 transgenic cotton plants with the highest mRNA expression level and better yield performance in field,were selected to raise their subsequent progenies.Results The T1 cotton plants showed the highest mRNA expression levels of 3.5-fold in P10(2)for the ch1 gene and 3.7-fold in P2(1)for the chi2 gene.Fluorescent in situ hybridization(FISH)confirmed a single copy number of ch1 and chi2(hemizygous)on chromosome no.6.Furthermore,the efficacy of transgenes on whitefly was evaluated through an insect bioassay,where after 96 h of infestation,mortality rates of whitefly were calculated to be 78%–80%in transgenic cotton plants.The number of eggs on transgenic cotton plants were calculated to be 0.1%–0.12 per plant compared with the non-transgenic plants where egg number was calculated to be 0.90–1.00 per plant.Conclusion Based on these findings,it can be concluded that the chemically synthesized barley chitinase genes(ch1 and chi2)have the potential to be effective against insects with chitin exoskeletons,including whiteflies.The transgenic cotton plants expressing these genes showed increased resistance to whiteflies,resulting in reduced egg numbers and higher mortality rates.
文摘Background Cotton(Gossypium hirsutum L.)is one of the most significant fibre and cash crops and plays an important role in Indian industrial and agricultural economies.However,over the years quantity and quality have been hampered by the pest leafhopper.Leafhopper alone has been shown to cause yield losses of up to 40%.In this study,screening and evaluation were performed to identify and categorize 100 cotton genotypes along with 5 checks as resistant,moderately resistant,sensitive and highly sensitive to leafhoppers.Results A total of hundred genotypes were evaluated along with five checks for leafhopper resistance.Based on the screening results,a total of 19 genotypes were resistant to leafhoppers,which was on par with the findings of the check KC 3.The contents of total soluble sugar,total soluble protein,and total free amino acids were significantly positively correlated with the mean grade,whereas total phenols content and trichome density were significantly negatively correlated with the susceptibility grade.However,based on screening and biochemical analysis,the genotypes KC 2,JR-23,Samaru-26-T,D 4,TCH 1728,RS 253,and B-61-1862 exhibited high resistance to leafhopper.Conclusion According to the findings of this study,choosing genotypes with high total phenolics content together with high trichome density and low contents of total soluble sugar,total soluble protein,and free amino acids may aid in the development of resistant genotypes.
文摘Background Globally,the cultivation of cotton is constrained by its tendency for extended periods of growth.Early maturity plays a potential role in rainfed-based multiple cropping system especially in the current era of climate change.In the current study,a set of 20 diverse Gossypium hirsutum genotypes were evaluated in two crop seasons with three planting densities and assessed for 11 morphological traits related to early maturity.The study aimed to identify genotype(s)that mature rapidly and accomplish well under diverse environmental conditions based on the two robust multivariate techniques called multi-trait stability index(MTSI)and multi-trait genotype-ideotype distance index(MGIDI).Results MTSI analysis revealed that out of the 20 genotypes,three genotypes,viz.,NNDC-30,A-2,and S-32 accomplished well in terms of early maturity traits in two seasons.Furthermore,three genotypes were selected using MGIDI method for each planting densities with a selection intensity of 15%.The strengths and weaknesses of the genotypes selected based on MGIDI method highlighted that the breeders could focus on developing early-maturing genotypes with specific traits such as days to first flower and boll opening.The selected genotypes exhibited positive genetic gains for traits related to earliness and a successful harvest during the first and second pickings.However,there were negative gains for traits related to flowering and boll opening.Conclusion The study identified three genotypes exhibiting early maturity and accomplished well under different planting densities.The multivariate methods(MTSI and MGIDI)serve as novel approaches for selecting desired genotypes in plant breeding programs,especially across various growing environments.These methods offer exclusive benefits and can easily construe and minimize multicollinearity issues.
基金supported by the National Key Research and Development Program of China(2022YFD1200300)China Agriculture Research System(CARS-15-01).
文摘Background Cotton fiber is a model tissue for studying microtubule-associated proteins(MAPs).The Xklp2(TPX2)proteins that belong to the novel MAPs member mainly participate in the formation and development of microtubule(MT).However,there is a lack of studies concerning the systematic characterization of the TPX2 genes family in cotton.Therefore,the identification and portrayal of G.hirsutum TPX2 genes can provide key targets for molecular manipula-tion in the breeding of cotton fiber improvement.Result In this study,TPX2 family genes were classified into two distinct subclasses TPXLs and MAP genes WAVE DAMP-ENED2-LIKE(WDLs)and quite conservative in quantity.GhWDL3 was significantly up-regulated in 15 days post anthe-sis fibers of ZRI-015(an upland cotton with longer and stronger fiber).GhWDL3 promotes all stem hairs to become straight when overexpressed in Arabidopsis,which may indirectly regulate cotton fiber cell morphology during fiber development.Virus induced gene silencing(VIGS)results showed that GhWDL3 inhibited fiber cell elongation at fiber development periods through regulating the expression of cell wall related genes.Conclusion These results reveal that GhWDL3 regulated cotton fiber cell elongation and provide crucial information for the further investigation in the regulatory mechanisms/networks of cotton fiber length.
基金Higher Education Commission of Pakistan for funding the experiments
文摘Background High temperature stress at peak flowering stage of cotton is a major hindrance for crop potential.This study aimed to increase genetic divergence regarding heat tolerance in newly developed cultivars and hybrids.Fifty cotton genotypes and 40 F1(hybrids)were tested under field conditions following the treatments,viz.,high temperature stress and control at peak flowering stage in August and October under April and June sowing,respectively.Results The mean squares revealed significant differences among genotypes,treatments,genotype×treatment for relative cell injury,chlorophyll contents,canopy temperature,boll retention and seed cotton yield per plant.The genetic diversity among 50 genotypes was analyzed through cluster analysis and heat susceptibility index(HSI).The heat tolerant genotypes including FH-Noor,NIAB-545,FH-466,FH-Lalazar,FH-458,NIAB-878,IR-NIBGE-8,Weal-AGShahkar,and heat sensitive,i.e.,CIM-602,Silky-3,FH-326,SLH-12 and FH-442 were hybridized in line×tester fashion to produce F1 populations.The breeding materials’populations(40 F1)revealed higher specific combining ability variances along with dominance variances,decided the non-additive type gene action for all the traits.The best general combining ability effects for most of the traits were displayed by the lines,i.e.,FH-Lalazar,NIAB-878 along with testers FH-326 and Silky-3.Specific combining ability effects and better-parent heterosis were showed by the crosses,viz.,FH-Lalazar×Silky-3,FH-Lalazar×FH-326,NIAB-878×Silky-3,and NIAB-878×FH-326 for seed cotton yield and yield contributing traits under high temperature stress.Conclusion Heterosis breeding should be carried out in the presence of non-additive type gene action for all the studied traits.The best combiner parents with better-parent heterosis may be used in crossing program to develop high yielding cultivars,and hybrids for high temperature stress tolerance.
基金financially supported by the National Natural Science Foundation of China(32272807 and U1703232)supported via project from State Key Laboratory of North China Crop Improvement and Regulation(NCCIR2021ZZ-1)。
文摘Cotton (Gossypium hirsutum L.) is an importantfiber cash crop,but its root traits related to phosphorus (P) acquisition,including mycorrhizal root traits,are poorly understood.Eight cotton varieties bred in northwestern China that were released between 1950 and 2013 were grown in pots with or without one arbuscular mycorrhizal fungal (AMF) species(Funneliformis mosseae) at three P supply levels (0,50 and 300 mg P as KH_(2)PO_(4)kg^(-1)).Eleven root traits were measured and calculated after 7 wk of growth.The more recent accessions had smaller root diameters,acquired less P and produced less biomass,indicating an (inadvertent) varietal selection for thinner roots that provided less cortical space for AMF,which then increased the need for a high P fertilizer level.At the two lower P levels,the mycorrhizal plants acquired more P and produced more biomass than non-mycorrhizal plants (3.2 vs.0.9 mg P per plant;1.8 vs.0.9 g biomass per plant at P_(0);14.5 vs.1.7 mg P per plant;and 4.7 vs.1.6 g biomass per plant at P_(50)).At the highest P level,the mycorrhizal plants acquired more P than non-mycorrhizal plants (18.8 vs.13.4 mg per P plant),but there was no difference in biomass (6.2 vs.6.3 g per plant).At the intermediate P level,root diameter was significantly positively correlated with shoot biomass,P concentration and the P content of mycorrhizal plants.The results of our study support the importance of the outsourcing model of P acquisition in the root economics space framework.Inadvertent varietal selection in the last decades,resulting in thinner roots and a lower benefit from AMF,has led to a lower productivity of cotton varieties at moderate P supply (i.e.,when mycorrhizal,the average biomass of older varieties 5.0 g per plant vs.biomass of newer varieties 4.4 g per plant),indicating the need to rethink cotton breeding efforts in order to achieve high yields without very high P input.One feasible way to solve the problem of inadvertent varietal selection for cotton is to be aware of the trade-offs between the root do-it-yourself strategy and the outsourcing towards AMF strategy,and to consider both morphological and mycorrhizal root traits when breeding cotton varieties.
基金supported by the National Natural Science Foundation of China(31901462 and 31671613)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(22KJA210005)+1 种基金the China Scholarship Council(202308320440)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(KYCX22_3508)。
文摘During the boll formation stage,cotton bolls exhibit the lowest expression of Bacillus thuringiensis(Bt)insecticidal proteins.Resistance to insects varies notably among different organs,which poses challenges for controlling cotton bollworms.Consequently,an experimental strategy was designed in the 2020-2021 cotton growing season to coordinate the enhancement of protein synthesis and the attenuation of degradation.Two Bt cultivars of Gossypium hirsutum,namely the hybrid Sikang 3 and the conventional Sikang 1,were used as test materials.Three treatments were applied at the peak flowering period:CK(the control),T1(amino acids),and T2(amino acids and EDTA).The results show that,in comparison to the CK group,the Bt protein contents were significantly increased in both cotton bolls and their subtending leaves under the T1 and T2 treatments.The maximum levels of increase observed were 67.5%in cotton bolls and 21.7%in leaves.Moreover,the disparity in Bt protein content between cotton bolls and their subtending leaves notably decreased by 31.2%.Correlation analysis suggested that the primary physiological mechanisms for augmenting Bt protein content involve increased protein synthesis and reduced protein catabolism,which are independent of Bt gene expression levels.Stepwise regression and path analysis revealed that elevating the soluble protein content and transaminase activity,while reducing the catabolic enzyme activities,are instrumental in enhancing the Bt protein content.Consequently,the coordinated application of amino acids and EDTA emerges as a strategy that can improve the overall resistance of Bt cotton and mitigate the spatiotemporal variations in Bt toxin concentrations in both cotton bolls and leaves.
基金supported by the National Natural Science Foundation of China (32170367 and 32000146)the Fundamental Research Funds for the Central Universities, China (2021TS066 and GK202103063)the Excellent Graduate Training Program of Shaanxi Normal University, China (LHRCCX23181).
文摘Cotton is one of the most important economic crops in the world,and it is a major source of fiber in the textile industry.Strigolactones(SLs)are a class of carotenoid-derived plant hormones involved in many processes of plant growth and development,although the functions of SL in fiber development remain largely unknown.Here,we found that the endogenous SLs were significantly higher in fibers at 20 days post-anthesis(DPA).Exogenous SLs significantly increased fiber length and cell wall thickness.Furthermore,we cloned three key SL biosynthetic genes,namely GhD27,GhMAX3,and GhMAX4,which were highly expressed in fibers,and subcellular localization analyses revealed that GhD27,GhMAX3,and GhMAX4 were localized in the chloroplast.The exogenous expression of GhD27,GhMAX3,and GhMAX4 complemented the physiological phenotypes of d27,max3,and max4 mutations in Arabidopsis,respectively.Knockdown of GhD27,GhMAX3,and GhMAX4 in cotton resulted in increased numbers of axillary buds and leaves,reduced fiber length,and significantly reduced fiber thickness.These findings revealed that SLs participate in plant growth,fiber elongation,and secondary cell wall formation in cotton.These results provide new and effective genetic resources for improving cotton fiber yield and plant architecture.
基金funded by the National Natural Science Foundation of China(32072022)the Nanfan Special Project,CAAS(YBXM07)the Hainan Yazhou Bay Seed Laboratory,China(B23CJ0208)。
文摘The germination process of seeds is influenced by the interplay between two opposing factors,pectin methylesterase(PME)and pectin methylesterase inhibitor(PMEI),which collectively regulate patterns of pectin methylesterification.Despite the recognized importance of pectin methylesterification in seed germination,the specific mechanisms that govern this process remain unclear.In this study,we demonstrated that the overexpression of GhPMEI53is associated with a decrease in PME activity and an increase in pectin methylesterification.This leads to seed cell wall softening,which positively regulates cotton seed germination.AtPMEI19,the homologue in Arabidopsis thaliana,plays a similar role in seed germination to GhPMEI53,indicating a conserved function and mechanism of PMEI in seed germination regulation.Further studies revealed that GhPMEI53 and AtPMEI19 directly contribute to promoting radicle protrusion and seed germination by inducing cell wall softening and reducing mechanical strength.Additionally,the pathways of abscicic acid(ABA)and gibberellin(GA)in the transgenic materials showed significant changes,suggesting that GhPMEI53/AtPMEI19-mediated pectin methylesterification serves as a regulatory signal for the related phytohormones involved in seed germination.In summary,GhPMEI53 and its homologs alter the mechanical properties of cell walls,which influence the mechanical resistance of the endosperm or testa.Moreover,they impact cellular phytohormone pathways(e.g.,ABA and GA)to regulate seed germination.These findings enhance our understanding of pectin methylesterification in cellular morphological dynamics and signaling transduction,and contribute to a more comprehensive understanding of the PME/PMEI gene superfamily in plants.
基金supported by the National Natural Science Foundation of China(5201101621)。
文摘Leaves are the main organ for photosynthesis and organic synthesis in cotton.Leaf shape has important effects on photosynthetic efficiency and canopy formation,thereby affecting cotton yield.Previous studies have shown that LMI1(LATE MERISTEM IDENTITY1)is the main gene regulating leaf shape.In this study,the LMI1 gene was inserted into the 35S promoter expression vector,and cotton plants overexpressing LMI1(OE)were obtained through genetic transformation.Statistical analysis of the biological traits of the T_(1) and T_(2) populations showed that compared to the wild type(WT),OE plants had significantly larger leaves,thicker stems and significantly greater dry weight.Furthermore,plant sections of the main vein and petiole showed that the numbers of cells in those tissues of OE plants were significantly greater.In addition,RNA-seq analysis revealed the differential expression of genes related to gibberellin synthesis and NAC gene family(genes containing the NAC domain)between the OE and WT plants,suggesting that LMI1 is involved in secondary wall formation and cell proliferation,which promotes stem thickening.Moreover,Gene Ontology(GO)analysis revealed enrichment in the terms of calcium ion binding,and Kyoto Encyclopedia of Genes and Genomes(KEGG)analysis showed enrichment in the terms of fatty acid degradation,phosphatidylinositol signal transduction system,and c AMP(cyclic adenosine monophosphate)signal pathway.These results suggested that LMI1 OE plants are responsive to gibberellin hormone signals,and have altered messenger signals(c AMP,Ca^(2+))which amplify this function,to promote stronger aboveground vegetative growth.This study found the LMI1 greatly increased the vegetative growth in cotton,which is the basic requirement for higher yield.
基金supported by the Ministry of Agriculture and Rural Affairs,China(2023ZD04039-01)the National Natural Science Foundation of China(32172008)the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang,China(2019R01002)。
文摘Pectin is a major constituent of the plant cell wall.Pectate lyase(PEL,EC 4.2.2.2)uses anti-β-elimination chemistry to cleave theα-1,4 glycosidic linkage in the homogalacturonan region of pectin.However,limited information is available on the comprehensive and evolutionary analysis of PELs in the Malvaceae.In this study,we identified 597PEL genes from 10 Malvaceae species.Phylogenetic and motif analyses revealed that these PELs are classified into six subfamilies:Clades I,II,III,IV,Va,and Vb.The two largest subfamilies,Clades I and II,contained 237 and222 PEL members,respectively.The members of Clades Va and Vb only contained four or five motifs,far fewer than the other subfamilies.Gene duplication analysis showed that segmental duplication played a crucial role in the expansion of the PEL gene family in Gossypium species.The PELs from Clades I,IV,Va,and Vb were expressed during the fiber elongation stage,but nearly all PEL genes from Clades II and III showed no expression in any of the investigated fiber developmental stages.We further performed single-gene haplotype association analysis in 2,001G.hirsutum accessions and 229 G.barbadense accessions.Interestingly,14 PELs were significantly associated with fiber length and strength traits in G.barbadense with superior fiber quality,while only eight GhPEL genes were found to be significantly associated with fiber quality traits in G.hirsutum.Our findings provide important information for further evolutionary and functional research on the PEL gene family members and their potential use for fiber quality improvement in cotton.
基金supported by the Project from the Ministry of Agriculture of China for Transgenic Research(2014ZX0800927B)the National Natural Science Foundation of China(31871667).
文摘Drought stress impairs crop growth and development.BEL1-like family transcription factors may be involved in plant response to drought stress,but little is known of the molecular mechanism by which these proteins regulate plant response and defense to drought stress.Here we show that the BEL1-like transcription factor GhBLH5-A05 functions in cotton(Gossypium hirsutum)response and defense to drought stress.Expression of GhBLH5-A05 in cotton was induced by drought stress.Overexpression of GhBLH5-A05 in both Arabidopsis and cotton increased drought tolerance,whereas silencing GhBLH5-A05 in cotton resulted in elevated sensitivity to drought stress.GhBLH5-A05 binds to cis elements in the promoters of GhRD20-A09 and GhDREB2C-D05 to activate the expression of these genes.GhBLH5-A05 interacted with the KNOX transcription factor GhKNAT6-A03.Co-expression of GhBLH5-A05 and GhKNAT6-A03 increased the transcription of GhRD20-A09 and GhDREB2C-D05.We conclude that GhBLH5-A05 acts as a regulatory factor with GhKNAT6-A03 functioning in cotton response to drought stress by activating the expression of the drought-responsive genes GhRD20-A09 and GhDREB2C-D05.
基金CONCYTEC and PROCIENCIA agencies from Peru in the framework of the call for Basic Research Projects2019-01[contract number401-2019-FONDECYT].
文摘This study investigates the influence of electropolymerization conditions on the deposition of polypyrrole(PPy)onto cotton-derived carbon fiber(CF)modified with reduced graphene oxide(rGO)for supercapacitors applications using an experimental/theorical approach.The surface modification of CF by rGO and/or by PPy electrodeposited at 10,25 and 50 mV s^(-1) was thoroughly examined physicochemical and electrochemically.Composite electrodes comprising CF-rGo-PPy,synthesized via electropolymerization at 25 mV s^(-1),demonstrated a remarkable increase in capacitance,showcasing~742 F g^(-1) compared to 153 F g^(-1) for CF.SEM,N_(2)-surface area,XPS,and TD-DFT approach revealed that the higher capacitance observed in CF-rGo-PPy electrodes underscores the influence of morphology and charged nitrogen species on the electrochemical performance of these modified electrodes.Notably,this electrode material achieves a specific capacitance retention of~96%of their initial capacitance after 10000 cycles at 0.5 A g^(-1) measured in a two-electrodes cell configuration.This work also discusses the influence of the scan rate used for pyrrole electropolymerization on the pseudocapacitance contribution of PPy and its possible effect on the porosity of the material.These results highlight the importance of appropriate electropolymerization conditions that allow obtaining the synergistic effect between CF,rGO and PPy.
基金supported by grants from the National Natural Science Foundation of China(32301947,32272220 and 32172120)the China Postdoctoral Science Foundation(2023M730909)the Natural Science Foundation of Hebei Province,China(C2020204066 and C2021204140)。
文摘The exogenous application of melatonin by the root drenching method is an effective way to improve crop drought resistance.However,the optimal concentration of melatonin by root drenching and the physiological mechanisms underlying melatonin-induced drought tolerance in cotton(Gossypium hirsutum L.)roots remain elusive.This study determined the optimal concentration of melatonin by root drenching and explored the protective effects of melatonin on cotton roots.The results showed that 50μmol L-1 melatonin was optimal and significantly mitigated the inhibitory effect of drought on cotton seedling growth.Exogenous melatonin promoted root development in drought-stressed cotton plants by remarkably increasing the root length,projected area,surface area,volume,diameter,and biomass.Melatonin also mitigated the drought-weakened photosynthetic capacity of cotton and regulated the endogenous hormone contents by regulating the relative expression levels of hormone-synthesis genes under drought stress.Melatonin-treated cotton seedlings maintained optimal enzymatic and non-enzymatic antioxidant capacities,and produced relatively lower levels of reactive oxygen species and malondialdehyde,thus reducing the drought stress damage to cotton roots(such as mitochondrial damage).Moreover,melatonin alleviated the yield and fiber length declines caused by drought stress.Taken together,these findings show that root drenching with exogenous melatonin increases the cotton yield by enhancing root development and reducing the root damage induced by drought stress.In summary,these results provide a foundation for the application of melatonin in the field by the root drenching method.
基金funded through Cotton Breeding Australia,a Joint Venture between CSIRO and Cotton Seed Distributors(Wee Waa,NSW 2388,Australia)。
文摘Results The population had large variations for lint yield,fibre properties,predicted yarn properties,and composite fibre quality values.Lint yield with all fibre quality traits was not correlated.When the selection was conducted first to keep those with improved fibre quality,and followed for high yields,a large proportion in the resultant populations was the same between selections based on Cottonspec predicted yarn quality and HVI-measured fibre properties.They both exceeded the selection based on FQI and Background The approach of directly testing yarn quality to define fibre quality breeding objectives and progress the selection is attractive but difficult when considering the need for time and labour.The question remains whether yarn prediction tools from textile research can serve as an alternative.In this study,using a dataset from three seasons of field testing recombinant inbred line population,Cottonspec,a software developed by the Commonwealth Scientific and Industrial Research Organisation(CSIRO)for predicting ring spun yarn quality from fibre properties measured by High Volume Instrument(HVI),was used to select improved fibre quality and lint yield in the population.The population was derived from an advanced generation inter-crossing of four CSIRO conventional commercial varieties.The Cottonspec program was able to provide an integrated index of the fibre qualities affecting yarn properties.That was compared with selection based on HVI-measured fibre properties,and two composite fibre quality variables,namely,fibre quality index(FQI),and premium and discount(PD)points.The latter represents the net points of fibre length,strength,and micronaire based on the Premiums and Discounts Schedule used in the market while modified by the inclusion of elongation.PD points.Conclusions The population contained elite segregants with improved yield and fibre properties,and Cottonspec predicted yarn quality is useful to effectively capture these elites.There is a need to further develop yarn quality prediction tools through collaborative efforts with textile mills,to draw better connectedness between fibre and yarn quality.This connection will support the entire cotton value chain research and evolution.