A novel gene, GhSERK1, was identified in cotton. It encoded a protein belonging to the somatic embryogenesis receptor- like kinase (SERK) family. The genomic sequence of GhSERK1 was 6 920 bp in length, containing a ...A novel gene, GhSERK1, was identified in cotton. It encoded a protein belonging to the somatic embryogenesis receptor- like kinase (SERK) family. The genomic sequence of GhSERK1 was 6 920 bp in length, containing a predicted transcriptional start site (TSS). Its full-length cDNA was 2 502 bp, encoding a protein of 627 amino acids. Sequence analysis of GhSERK1 revealed high levels of similarity to other reported SERKs, as well as a conserved intron/exon structure that was unique to members of the SERK family. Expression analysis showed that GhSERK1 mRNA was present in all organs of cotton plants and at different developmental stages, but its transcripts were most abundant in reproductive organs. Compared with that of the male-fertile line, the level of GhSERK1 mRNA was lower in the anther of the male-sterile cotton line, in which the pollen development was defected. Taken together, these findings illustrated that the GhSERK1 play a critical role during the anther formation, and may also have a broad role in other aspects of plant development.展开更多
[Objective] This study was conducted to clarify the biological information of PHYB genes in upland cotton (Gossypium hirsutum). [Method] Two PHYB genes were identified from the genome database of allotetraploid cott...[Objective] This study was conducted to clarify the biological information of PHYB genes in upland cotton (Gossypium hirsutum). [Method] Two PHYB genes were identified from the genome database of allotetraploid cotton (G. hirsutum L. acc. TM-1), and were found to be distributed on subgenomes A10 and D10. And then bioinformatic analysis on these two genes were performed. [Result] The PHYB genes of upland cotton had the same motifs and domains with the PHYB genes in other plant species, and even the number and location of the motifs and domains of these PHYB genes were consistent. The PHYB amino acid sequence alignment and the phylogenetic tree constructed based on PHYB amino acid sequence of these plant species indicated that the two PHYB genes in upland cotton had higher homology and closer evolutionary relationships with cocoa (Theobroma cacao), but lower similarity to PHYB genes in monocotyledonous plants, such as rice (Oryza saitva) and corn (Zea mays). The comparison of PHYB gene structure also revealed that plant PHYB gene was more conserved during evolution. The autophosphorylation of dozens of phosphorylation sites in upland cotton PHYB gene may be essential for the functions of phytochromes and plays a significant role in regulating phytochrome-mediated signal transduction pathways. [Conclusion] The results of this paper will provide a theoretical basis for the cloning and functional research of PHYB genes.展开更多
Cotton yield per unit ground area has stagnated for a dozen years in Hubei Province, China, although a series of new high- yielding varieties have been commercialized. A multi-location investigation was carried out in...Cotton yield per unit ground area has stagnated for a dozen years in Hubei Province, China, although a series of new high- yielding varieties have been commercialized. A multi-location investigation was carried out in 2008 and 2009 in 13 counties to determine if increased planting population density (PPD) would break the stagnant yield. The results showed that significant differences among the fields existed in theoretical yield, PPD, and bolls per square meter (BPM). The lowest yield of 1 641.1 kg ha-I was resulted from the lowest PPD of 1.7 plants m-2 and the lowest BPM of 71.8 bolls m-2, while the highest yield of 2 779.7 kg ha-~ was resulted from the highest PPD of 2.5 plants m-2, and the highest BPM of 129.4 bolls m-z. Plant mapping revealed that boll retention rate (BRR) was maintained over 30 or 40% for the first 17-18 fruiting branches (FBs) and decreased dramatically thereafter, rotten boll rate (RBR) decreased, but open boll rate (OBR) rose first and dropped later with rising FB from the bottom to the top. But BRR, RBR, and OBR were all dropped with the fruiting positions (FPs) extending outwards. The optimum range of plant density would be 2-3 plants m-2 and the proper individual plant structure would be 16-19 FBs with 5-7 FPs for cotton production in Hubei Province.展开更多
Background As the most widely cultivated fiber crop,cotton production depends on hybridization to unlock the yield potential of current varieties.A deep understanding of genetic dissection is crucial for the cultivati...Background As the most widely cultivated fiber crop,cotton production depends on hybridization to unlock the yield potential of current varieties.A deep understanding of genetic dissection is crucial for the cultivation of enhanced hybrid plants with desired traits,such as high yield and fine fiber quality.In this study,the general combining ability(GCA)and specific combining ability(SCA)of yield and fiber quality of nine cotton parents(six lines and three testers)and eighteen F1 crosses produced using a line×tester mating design were analyzed.Results The results revealed significant effects of genotypes,parents,crosses,and interactions between parents and crosses for most of the studied traits.Moreover,the effects of both additive and non-additive gene actions played a notably significant role in the inheritance of most of the yield and fiber quality attributes.The F1 hybrids of(Giza 90×Aust)×Giza 86,Uzbekistan 1×Giza 97,and Giza 96×Giza 97 demonstrated superior performance due to their favorable integration of high yield attributes and premium fiber quality characteristics.Path analysis revealed that lint yield has the highest positive direct effect on seed cotton yield,while lint percentage showed the highest negative direct effect on seed cotton yield.Principal component analysis identified specific parents and hybrids associated with higher cotton yield,fiber quality,and other agronomic traits.Conclusion This study provides insights into identifying potential single-and three-way cross hybrids with superior cotton yield and fiber quality characteristics,laying a foundation for future research on improving fiber quality in cotton.展开更多
Sixteen cotton cultivars widely planted in China were sowed under five different drought concentrations(0,2.5,5,7.5,and 10%)using PEG6000 to screen the indices of drought resistance identification and explore the drou...Sixteen cotton cultivars widely planted in China were sowed under five different drought concentrations(0,2.5,5,7.5,and 10%)using PEG6000 to screen the indices of drought resistance identification and explore the drought resistance of different cotton cultivars.Eighteen physiological indices including root,stem,and leaf water contents(RWC,SWC,and LWC),net photosynthetic rate(Pn),the maximum photochemical quantum yield(Fv/Fm),the actual photochemical quantum yield(ΦPSII),non-photochemical quenching coefficient(NPQ),leaf water potential(LWP),osmotic potential(Ψs),leaf relative conductivity(REC),leaf proline content(Pro),leaf and root soluble protein contents(LSPC and RSPC),leaf and root malondialdehyde(MDA)contents(LMDA and RMDA),root superoxide dismutase,peroxidase,and catalase activities(RSOD,RPOD,and RCAT)were measured.Results indicated the 18 physiological indices can be converted into five or six independent comprehensive indices by principal component analysis,and nine typical indices(Fv/Fm,SWC,LWP,Pro,LMDA,RSPC,RMDA,RSOD,and RCAT)screened out by a stepwise regression method could be utilized to evaluate the drought resistance.Moreover,the 16 cotton cultivars were divided into four types:drought sensitive,drought weak sensitive,moderate drought resistant,and drought resistant types.The resistance ability of two selected cotton cultivars(drought resistant cultivar,Dexiamian 1;drought sensitive cultivar,Yuzaomian 9110)with contrasting drought sensitivities were further verified by pot experiment.Results showed that the responses of final cotton biomass,yield,and yield composition to drought were significantly different between the two cultivars.In conclusion,drought resistant cultivar Dexiamian 1 and drought sensitive cultivar Yuzaomian 9110 were screened through hydroponics experiment,which can be used as ideal experimental materials to study the mechanism of different cotton cultivars with contrasting drought sensitivities in response to drought stress.展开更多
Genotype and plant type affect photosynthetic production by changing the canopy structure in crops.To analyze the mechanism of action of heterosis and plant type on canopy structure in cotton(Gossypium hirsutum L.),we...Genotype and plant type affect photosynthetic production by changing the canopy structure in crops.To analyze the mechanism of action of heterosis and plant type on canopy structure in cotton(Gossypium hirsutum L.),we had selected two cotton hybrids(Shiza 2,Xinluzao 43) and two conventional varieties(Xinluzao 13,Xinluzao 33) with different plant types in this experiment.We studied canopy characteristics and their correlation with photosynthesis in populations of different genotypes and plant types during yield formation in Xinjiang,China.Canopy characteristics including leaf area index(LAI),mean foliage tilt angle(MTA),canopy openness(DIFN),and chlorophyll relative content(SPAD).The results showed that LAI and SPAD peak values were higher and their peak values arrived later,and the adjustment capacity of MTA during the flowering and boll-forming stages was stronger in Xinluzao 43,with the normal-leaf,pagoda plant type,than these values in other varieties.DIFN of Xinluzao 43 remained between0.09 and 0.12 during the flowering and boll-forming stages,but was lower than that in the other varieties during the boll-opening stage.Thus,these characteristics of Xinluzao 43 were helpful for optimizing the light environment and maximizing light interception,thereby increasing photosynthetic capability.The photosynthetic rate and photosynthetic area were thus affected by cotton genotype as changes in the adjustment range of MTA,increases in peak values of LAI and SPAD,and extension of the functional stage of leaves.Available photosynthetic area and canopy light environment were affected by cotton plant type as changes in MTA and DIFN.Heterosis expression and plant type development were coordinated during different growth stages,the key to optimizing the canopy structure and further increasing yield.展开更多
Fiber length of cotton(Gossypium hirsutum L.)decreases under drought stress,potassium(K)could diminish the decreased caused by drought,but the mechanism associated with this alleviation effect is not clear.We evaluate...Fiber length of cotton(Gossypium hirsutum L.)decreases under drought stress,potassium(K)could diminish the decreased caused by drought,but the mechanism associated with this alleviation effect is not clear.We evaluated the effect of K on fiber elongation using two cotton cultivars,Simian 3 and Siza 3,grown in well-watered and drought-stressed conditions.Potassium fertilizer(K2O)was applied 0,150,or 300 kg ha?1 in each growing condition.Drought stress reduced the final fiber length due to a decline in the maximum rate of rapid elongation(Vmax,mmday?1).The application of K alleviated the droughtinduced fiber length reduction by increasing Vmax.At 10 and 15 days post-anthesis(DPA),drought significantly reduced osmotic potential(OP)and increased K+and malate contents at all K rates,relative to well-watered conditions,which was associated with increased activities of phosphoenolpyruvate carboxylase(PEPC),V-ATPase,PPase,and PM H+-ATPase in cotton fiber.However,the relative contribution of K+and malate to OP declined under drought in comparison with well-watered condition.Compared with control without K,K application decreased OP and increased the accumulation of osmolytes(K+,malate and soluble sugar)as well as the activities of related enzymes in fiber irrespective of water treatments.Moreover,K application increased osmotic adjustment during drought,and improved the contribution of K+and malate to OP,especially under drought stress.This study showed that drought decreased fiber length by reducing Vmax,and K application ameliorates the decline in fiber elongation due to drought by enhancing osmolytes accumulation and their contribution to OP in fiber cells.展开更多
Leaf is a essential part of the plants for photosynthetic activities which mainly economize the resources for boll heath. Significant variations of leaf shapes across the Gossypium sp. considerably influence the infil...Leaf is a essential part of the plants for photosynthetic activities which mainly economize the resources for boll heath. Significant variations of leaf shapes across the Gossypium sp. considerably influence the infiltration of sunlight for photosynthesis. To understand the genetic variants and molecular processes underlying for cotton leaf shape, we used F2 population derived from upland cotton genotype P30A (shallow-lobed leaf) and sea-island cotton genotype ISR (deep-lobed leaf) to map leaf deep lobed phenotype controlling genes LBL1 and LBL2. Genetic analysis and localization results have unmasked the position and interaction between both loci of LBL1 and LBL2, and revealed the co-dominance impact of the genes in regulating depth of leaf blades lobes in cotton. LBL1 had been described as a main gene and member of transcription factor family leucine zipper (HD-ZIPI) from a class I homologous domain factor Gorai.OO2G244000. The qRT-PCR results elaborated the continuous change in expression level of LBL1 at different growth stages and leaf parts of cotton. Higher expression level was observed in mature large leaves followed by medium and young leaves respectively. For further confirmation, plants were tested from hormonal induction treatments, which explained that LBL 1 expression was influenced by hormonal signaling. Moreover, the highest expression level was detected in brassinolides (BR) treatment as compared to other hormones, and this hormone plays an important role in the process of leaf blade lobed formation.展开更多
Salt stress on cotton varieties of distinct salinity tolerance can induce expression of different proteins. Zhong 07, a salt-tolerant variety and Zhong s9612, a salt-sensitive variety, were utilized as experimental ma...Salt stress on cotton varieties of distinct salinity tolerance can induce expression of different proteins. Zhong 07, a salt-tolerant variety and Zhong s9612, a salt-sensitive variety, were utilized as experimental materials. The leaves of trefoil seedlings treated with or without 0.4% NaCl for 24 h were harvested for whole-protein extraction. Two-dimensional technology, combined with mass spectroscopy (MS) analysis and protein database searching, was employed to detect differentially expressed proteins and determine their identities and biological functions. Compared with the control, Zhong 07 showed 10 differentially expressed proteins under salt stress, of which 6 were upregulated and 4 were downregulated. Meanwhile, 12 differentially expressed proteins were detected in Zhong s9612 under salt stress, of which 10 were upregulated and 2 were downregulated. In the matrix-assisted laser desorption-ionization/time of flight-time of flight/MS analysis, 14 differentially expressed proteins were successfully identified, including the ribulose-1, 5-bisphosphate carboxylase/oxygenase (RuBisco) large subunit-binding protein subunit alpha (RuBisco α), luminal binding protein (LBP), heat shock protein 70 (Hsp1, 2, 3), pathogenesis-related protein class 10 (PR-10), quinoneoxidoreductase-like protein (QOR), S-adenosylmethioninesyn-thetase (SAMS), enolase (EN), and RuBisco large subunit-binding protein subunit beta (RuBisco β). Cellular function is ultimately executed by proteins, and cotton varieties with different salt tolerance can be influenced by salt stress to various degrees, which can provide certain theoretical foundation for the identification of salt tolerance of cotton varieties. The findings also provide some proteins, such as the RuBisco large subunit binding proteins α and β subunits, OEE2 protein, HSP70, and S-adenosylmethionine synthetase, which can be used as protein markers of salt-to-lerance before- and post-treatment, making a big difference in salt-tolerance identification in cotton.展开更多
Fiber productivity and quality of cotton are severely affected by abiotic stresses.In this study,we identified the role of GhADF1,an actin depolymerizing factor,in cotton response to drought stress.GhADF1 expression i...Fiber productivity and quality of cotton are severely affected by abiotic stresses.In this study,we identified the role of GhADF1,an actin depolymerizing factor,in cotton response to drought stress.GhADF1 expression in cotton could be induced by PEG6000.GhADF1-RNAi transgenic cotton showed increased tolerance to drought stress during seed germination and seedling development as well as at the reproductive stage.In contrast,overexpression of GhADF1 led to a drought-sensitive phenotype in transgenic plants.GhADF1-RNAi plants produced an enlarged root system with longer primary roots,more lateral roots,increased root dry biomass,and increased cell size.In leaves of GhADF1-RNAi cotton,proline content and activities of reactive oxygen species-scavenging enzymes were increased following drought stress compared with those in wild type.GhADF1-RNAi lines showed higher water-use efficiency than the wild type,accompanied by reduced leaf stomatal density and conductance.GhADF1-RNAi cotton produced higher fiber yield in the field under both normal and drought conditions.Transcriptomic analyses identified 124 differentially expressed genes in leaves of GhADF1-RNAi lines compared with the wild type following drought treatment.Upregulated genes included those encoding transcription factors,protein kinases,heat shock proteins,and other proteins known to be involved in stress responses.We conclude that GhADF1 reduces the expression of abiotic stress-associated genes in cotton response to drought stress and may be a promising candidate gene for crop improvement by genetic manipulation.展开更多
Stepwise selection approach was adopted to obtain glyphosate-tolerant upland cotton mutant(R1098) from the embryogenic calli of Coker 312(Gossypium hirsutum L.).The calli were transferred to selection medium and multi...Stepwise selection approach was adopted to obtain glyphosate-tolerant upland cotton mutant(R1098) from the embryogenic calli of Coker 312(Gossypium hirsutum L.).The calli were transferred to selection medium and multi-step selection pressure process was carried out until the展开更多
While Upland cotton(Gossypium hirsutum L.) represents 95% of the world production,its genetic improvement is hindered by the shortage of effective genomic tools and resources.The
Background:Potassium(K)deficiency has become a common field production problem following the widespread adoption of Bacillus thuringiensis(Bt)transgenic cotton(Gossypium hirsutum L.)worldwide.The purpose of this study...Background:Potassium(K)deficiency has become a common field production problem following the widespread adoption of Bacillus thuringiensis(Bt)transgenic cotton(Gossypium hirsutum L.)worldwide.The purpose of this study was to clarify whether the introduction of Bt gene directly reduces the K-use efficiency of cotton to induce K deficiency.Results:The cotton variety,Jihe 321(wild type,WT)and its two Bt(Cry1Ac)-transgenic overexpression lines(OE-29317,OE-29312)were studied in field with low soil-test K+(47.8 mg·kg^(−1)).In the field with low soil-test K+,only OE-29317 had less biomass and K+accumulation than the WT at some growth stages.Both Bt lines produced similar or even greater seed cotton yield than WT in the field.When the Bt gene(~70%)in OE-29317 and OE-29312 plants was silenced by virus-induced gene silencing(VIGS),the VIGS-Bt plants did not produce more biomass than VIGSgreen fluorescent protein(control)plants.Conclusions:The introduction of Bt gene did not necessarily hinder the K use efficiency of the cotton lines under this study.展开更多
Background:Calmodulin(CaM)is one of the most important Ca^(2+)signaling receptors because it regulates diverse physiological and biochemical reactions in plants.CaM functions by interacting with CaM-binding proteins(C...Background:Calmodulin(CaM)is one of the most important Ca^(2+)signaling receptors because it regulates diverse physiological and biochemical reactions in plants.CaM functions by interacting with CaM-binding proteins(CaMBPs)to modulate Ca^(2+)signaling.IQ domain(IQD)proteins are plant-specific CaMBPs that bind to CaM by their specific CaM binding sites.Results:In this study,we identified 102 GhIQD genes in the Gossypium hirsutum L.genome.The GhIQD gene family was classified into four clusters(Ⅰ,Ⅱ,Ⅲ,andⅣ),and we then mapped the GhIQD genes to the G.hirsutum L.chromosomes.Moreover,we found that 100 of the 102 GhIQD genes resulted from segmental duplication events,indicating that segmental duplication is the main force driving GhIQD gene expansion.Gene expression pattern analysis showed that a total of 89 GhIQD genes expressed in the elongation stage and second cell wall biosynthesis stage of the fiber cells,suggesting that GhIQD genes may contribute to fiber cell development in cotton.In addition,we found that 20 selected GhIQD genes were highly expressed in various tissues.Exogenous application of MeJA significantly enhanced the expression levels of GhIQD genes.Conclusions:Our study shows that GhIQD genes are involved in fiber cell development in cotton and are also widely induced by MeJA.Thw results provide bases to systematically characterize the evolution and biological functions of GhIQD genes,as well as clues to breed better cotton varieties in the future.展开更多
Exotic Gossypium germplasm is a rich source of useful agronomic traits for improvement programs of cultivated cotton.Efficient use of genetic variation available in the wild relatives depends
A permanent doubled haploid population fromthe crossing of G.hirsutum × G.barbadensewere developed by means of Vsg,virescentlymarked semigamy line in sea island cotton,which was characterized by a cytologicalmech...A permanent doubled haploid population fromthe crossing of G.hirsutum × G.barbadensewere developed by means of Vsg,virescentlymarked semigamy line in sea island cotton,which was characterized by a cytologicalmechanism for developing haploids with certainconvenience,and thus constructed展开更多
[Objective] The aim of this study was to characterize the national regis- tered varieties selected from cotton regional trials in Yangtze River Valley (YaRV) in recent years. [Method] Cotton cultivar classification ...[Objective] The aim of this study was to characterize the national regis- tered varieties selected from cotton regional trials in Yangtze River Valley (YaRV) in recent years. [Method] Cotton cultivar classification and comprehensive evaluation index were set up based on national cotton registration standard. GGE biplot method was adopted to analyze the correlation of major breeding target characters of 53 national registered cotton varieties in cotton regional trials in YaRV during 1981-2012. According to the shift of check cultivars in cotton regional trials in the past, the cotton regional trial practice since 1981 was divided into five periods. The dynamic of cultivar type's proportion and the evaluation index scores was analyzed across the five periods. [Result] There existed intricate interrelationship among cotton breeding target traits, which constrained it necessary to construct indices for com- prehensive evaluation of cotton varieties. The dynamic of cultivar types in the five periods indicated that type II varieties emerged since Simian 3 period and then its proportion decreased gradually; type Ⅲ varieties maintained a certain proportion in each period and kept on the rise overall; type Ⅳvarieties occupied the majority pro- portion of registered cultivars before 1993, but a minor proportion since Simian 3 period. On the other side, the change trend of the evaluation index demonstrated that the varieties registered before 2003 did not pass the qualified line at present. The peak scores appeared in the varieties registered during 2004-2008. The scores of the varieties registered after 2009 were only slightly over the qualified line. [Conclusion] More attention should be paid to the improvement and evaluation of micronaire, so as to guide the simultaneous development of high yielding and fiber quality in cotton breeding and registration procedure in YaRV.展开更多
The short season cotton(SSC) was important Upland plant ecotype(Gossypium hirsutum L.).The growth of SSC was very short that is 105 ~ 110 days(after planting). SSC could increase
As one of the longest cells characterized in plant kingdom,cotton fibers were regarded as an ideal material for studying plant cell growth and development.In recent years,several reports revealed
基金supported by the Research Initiative of Development of Transgenic Cotton Plants funded by Ministry of Agriculture, China (2008ZX08005-004)
文摘A novel gene, GhSERK1, was identified in cotton. It encoded a protein belonging to the somatic embryogenesis receptor- like kinase (SERK) family. The genomic sequence of GhSERK1 was 6 920 bp in length, containing a predicted transcriptional start site (TSS). Its full-length cDNA was 2 502 bp, encoding a protein of 627 amino acids. Sequence analysis of GhSERK1 revealed high levels of similarity to other reported SERKs, as well as a conserved intron/exon structure that was unique to members of the SERK family. Expression analysis showed that GhSERK1 mRNA was present in all organs of cotton plants and at different developmental stages, but its transcripts were most abundant in reproductive organs. Compared with that of the male-fertile line, the level of GhSERK1 mRNA was lower in the anther of the male-sterile cotton line, in which the pollen development was defected. Taken together, these findings illustrated that the GhSERK1 play a critical role during the anther formation, and may also have a broad role in other aspects of plant development.
基金Supported by National Natural Science Foundation of China(31301682)the Agricultural Science Independent Innovation Foundation of Jiangsu Province[CX(14)5009]+1 种基金National Key Special Project for Breeding and Cultivation of GMO Varieties of China(2013ZX08005)the Jiangsu Province Science and Technology Support Program(BE2014389)~~
文摘[Objective] This study was conducted to clarify the biological information of PHYB genes in upland cotton (Gossypium hirsutum). [Method] Two PHYB genes were identified from the genome database of allotetraploid cotton (G. hirsutum L. acc. TM-1), and were found to be distributed on subgenomes A10 and D10. And then bioinformatic analysis on these two genes were performed. [Result] The PHYB genes of upland cotton had the same motifs and domains with the PHYB genes in other plant species, and even the number and location of the motifs and domains of these PHYB genes were consistent. The PHYB amino acid sequence alignment and the phylogenetic tree constructed based on PHYB amino acid sequence of these plant species indicated that the two PHYB genes in upland cotton had higher homology and closer evolutionary relationships with cocoa (Theobroma cacao), but lower similarity to PHYB genes in monocotyledonous plants, such as rice (Oryza saitva) and corn (Zea mays). The comparison of PHYB gene structure also revealed that plant PHYB gene was more conserved during evolution. The autophosphorylation of dozens of phosphorylation sites in upland cotton PHYB gene may be essential for the functions of phytochromes and plays a significant role in regulating phytochrome-mediated signal transduction pathways. [Conclusion] The results of this paper will provide a theoretical basis for the cloning and functional research of PHYB genes.
基金funded by the Professional (Agriculture) Researching Project for Public Benefit of Ministry of Agriculture,China (3-5)High-Yielding Promotion Project of Ministry of Agriculture,Chinathe National Industrial System Program of Modern Agriculture,China
文摘Cotton yield per unit ground area has stagnated for a dozen years in Hubei Province, China, although a series of new high- yielding varieties have been commercialized. A multi-location investigation was carried out in 2008 and 2009 in 13 counties to determine if increased planting population density (PPD) would break the stagnant yield. The results showed that significant differences among the fields existed in theoretical yield, PPD, and bolls per square meter (BPM). The lowest yield of 1 641.1 kg ha-I was resulted from the lowest PPD of 1.7 plants m-2 and the lowest BPM of 71.8 bolls m-2, while the highest yield of 2 779.7 kg ha-~ was resulted from the highest PPD of 2.5 plants m-2, and the highest BPM of 129.4 bolls m-z. Plant mapping revealed that boll retention rate (BRR) was maintained over 30 or 40% for the first 17-18 fruiting branches (FBs) and decreased dramatically thereafter, rotten boll rate (RBR) decreased, but open boll rate (OBR) rose first and dropped later with rising FB from the bottom to the top. But BRR, RBR, and OBR were all dropped with the fruiting positions (FPs) extending outwards. The optimum range of plant density would be 2-3 plants m-2 and the proper individual plant structure would be 16-19 FBs with 5-7 FPs for cotton production in Hubei Province.
文摘Background As the most widely cultivated fiber crop,cotton production depends on hybridization to unlock the yield potential of current varieties.A deep understanding of genetic dissection is crucial for the cultivation of enhanced hybrid plants with desired traits,such as high yield and fine fiber quality.In this study,the general combining ability(GCA)and specific combining ability(SCA)of yield and fiber quality of nine cotton parents(six lines and three testers)and eighteen F1 crosses produced using a line×tester mating design were analyzed.Results The results revealed significant effects of genotypes,parents,crosses,and interactions between parents and crosses for most of the studied traits.Moreover,the effects of both additive and non-additive gene actions played a notably significant role in the inheritance of most of the yield and fiber quality attributes.The F1 hybrids of(Giza 90×Aust)×Giza 86,Uzbekistan 1×Giza 97,and Giza 96×Giza 97 demonstrated superior performance due to their favorable integration of high yield attributes and premium fiber quality characteristics.Path analysis revealed that lint yield has the highest positive direct effect on seed cotton yield,while lint percentage showed the highest negative direct effect on seed cotton yield.Principal component analysis identified specific parents and hybrids associated with higher cotton yield,fiber quality,and other agronomic traits.Conclusion This study provides insights into identifying potential single-and three-way cross hybrids with superior cotton yield and fiber quality characteristics,laying a foundation for future research on improving fiber quality in cotton.
基金supported by the National Natural Science Foundation of China (31630051 and 31571606)the Jiangsu Collaborative Innovation Center for Modern Crop Production, China (JCIC-MCP)the earmarked fund for China Agriculture Research System (CARS-18-14)
文摘Sixteen cotton cultivars widely planted in China were sowed under five different drought concentrations(0,2.5,5,7.5,and 10%)using PEG6000 to screen the indices of drought resistance identification and explore the drought resistance of different cotton cultivars.Eighteen physiological indices including root,stem,and leaf water contents(RWC,SWC,and LWC),net photosynthetic rate(Pn),the maximum photochemical quantum yield(Fv/Fm),the actual photochemical quantum yield(ΦPSII),non-photochemical quenching coefficient(NPQ),leaf water potential(LWP),osmotic potential(Ψs),leaf relative conductivity(REC),leaf proline content(Pro),leaf and root soluble protein contents(LSPC and RSPC),leaf and root malondialdehyde(MDA)contents(LMDA and RMDA),root superoxide dismutase,peroxidase,and catalase activities(RSOD,RPOD,and RCAT)were measured.Results indicated the 18 physiological indices can be converted into five or six independent comprehensive indices by principal component analysis,and nine typical indices(Fv/Fm,SWC,LWP,Pro,LMDA,RSPC,RMDA,RSOD,and RCAT)screened out by a stepwise regression method could be utilized to evaluate the drought resistance.Moreover,the 16 cotton cultivars were divided into four types:drought sensitive,drought weak sensitive,moderate drought resistant,and drought resistant types.The resistance ability of two selected cotton cultivars(drought resistant cultivar,Dexiamian 1;drought sensitive cultivar,Yuzaomian 9110)with contrasting drought sensitivities were further verified by pot experiment.Results showed that the responses of final cotton biomass,yield,and yield composition to drought were significantly different between the two cultivars.In conclusion,drought resistant cultivar Dexiamian 1 and drought sensitive cultivar Yuzaomian 9110 were screened through hydroponics experiment,which can be used as ideal experimental materials to study the mechanism of different cotton cultivars with contrasting drought sensitivities in response to drought stress.
基金support of the National Natural Science Foundation of China (U1203283)the National Key Technology R&D Program of China (2014BAD09B03)the Natural Science Foundation of Hebei (C2015301051)
文摘Genotype and plant type affect photosynthetic production by changing the canopy structure in crops.To analyze the mechanism of action of heterosis and plant type on canopy structure in cotton(Gossypium hirsutum L.),we had selected two cotton hybrids(Shiza 2,Xinluzao 43) and two conventional varieties(Xinluzao 13,Xinluzao 33) with different plant types in this experiment.We studied canopy characteristics and their correlation with photosynthesis in populations of different genotypes and plant types during yield formation in Xinjiang,China.Canopy characteristics including leaf area index(LAI),mean foliage tilt angle(MTA),canopy openness(DIFN),and chlorophyll relative content(SPAD).The results showed that LAI and SPAD peak values were higher and their peak values arrived later,and the adjustment capacity of MTA during the flowering and boll-forming stages was stronger in Xinluzao 43,with the normal-leaf,pagoda plant type,than these values in other varieties.DIFN of Xinluzao 43 remained between0.09 and 0.12 during the flowering and boll-forming stages,but was lower than that in the other varieties during the boll-opening stage.Thus,these characteristics of Xinluzao 43 were helpful for optimizing the light environment and maximizing light interception,thereby increasing photosynthetic capability.The photosynthetic rate and photosynthetic area were thus affected by cotton genotype as changes in the adjustment range of MTA,increases in peak values of LAI and SPAD,and extension of the functional stage of leaves.Available photosynthetic area and canopy light environment were affected by cotton plant type as changes in MTA and DIFN.Heterosis expression and plant type development were coordinated during different growth stages,the key to optimizing the canopy structure and further increasing yield.
基金financial support from the National Key Research and Development Program of China (2018YFD1000900)Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP)Jiangsu Overseas Research and Training Program for University Prominent Young and Middle-aged Teachers and President (2016), China
文摘Fiber length of cotton(Gossypium hirsutum L.)decreases under drought stress,potassium(K)could diminish the decreased caused by drought,but the mechanism associated with this alleviation effect is not clear.We evaluated the effect of K on fiber elongation using two cotton cultivars,Simian 3 and Siza 3,grown in well-watered and drought-stressed conditions.Potassium fertilizer(K2O)was applied 0,150,or 300 kg ha?1 in each growing condition.Drought stress reduced the final fiber length due to a decline in the maximum rate of rapid elongation(Vmax,mmday?1).The application of K alleviated the droughtinduced fiber length reduction by increasing Vmax.At 10 and 15 days post-anthesis(DPA),drought significantly reduced osmotic potential(OP)and increased K+and malate contents at all K rates,relative to well-watered conditions,which was associated with increased activities of phosphoenolpyruvate carboxylase(PEPC),V-ATPase,PPase,and PM H+-ATPase in cotton fiber.However,the relative contribution of K+and malate to OP declined under drought in comparison with well-watered condition.Compared with control without K,K application decreased OP and increased the accumulation of osmolytes(K+,malate and soluble sugar)as well as the activities of related enzymes in fiber irrespective of water treatments.Moreover,K application increased osmotic adjustment during drought,and improved the contribution of K+and malate to OP,especially under drought stress.This study showed that drought decreased fiber length by reducing Vmax,and K application ameliorates the decline in fiber elongation due to drought by enhancing osmolytes accumulation and their contribution to OP in fiber cells.
基金supported by the Genetically Modified Organisms Breeding Major Projects,China (2016ZX0800 5004, 2016ZX08009003-003-004)the National Natural Science Foundation of China (31601349)the Innovation Program of Chinese Academy of Agricultural Sciences
文摘Leaf is a essential part of the plants for photosynthetic activities which mainly economize the resources for boll heath. Significant variations of leaf shapes across the Gossypium sp. considerably influence the infiltration of sunlight for photosynthesis. To understand the genetic variants and molecular processes underlying for cotton leaf shape, we used F2 population derived from upland cotton genotype P30A (shallow-lobed leaf) and sea-island cotton genotype ISR (deep-lobed leaf) to map leaf deep lobed phenotype controlling genes LBL1 and LBL2. Genetic analysis and localization results have unmasked the position and interaction between both loci of LBL1 and LBL2, and revealed the co-dominance impact of the genes in regulating depth of leaf blades lobes in cotton. LBL1 had been described as a main gene and member of transcription factor family leucine zipper (HD-ZIPI) from a class I homologous domain factor Gorai.OO2G244000. The qRT-PCR results elaborated the continuous change in expression level of LBL1 at different growth stages and leaf parts of cotton. Higher expression level was observed in mature large leaves followed by medium and young leaves respectively. For further confirmation, plants were tested from hormonal induction treatments, which explained that LBL 1 expression was influenced by hormonal signaling. Moreover, the highest expression level was detected in brassinolides (BR) treatment as compared to other hormones, and this hormone plays an important role in the process of leaf blade lobed formation.
文摘Salt stress on cotton varieties of distinct salinity tolerance can induce expression of different proteins. Zhong 07, a salt-tolerant variety and Zhong s9612, a salt-sensitive variety, were utilized as experimental materials. The leaves of trefoil seedlings treated with or without 0.4% NaCl for 24 h were harvested for whole-protein extraction. Two-dimensional technology, combined with mass spectroscopy (MS) analysis and protein database searching, was employed to detect differentially expressed proteins and determine their identities and biological functions. Compared with the control, Zhong 07 showed 10 differentially expressed proteins under salt stress, of which 6 were upregulated and 4 were downregulated. Meanwhile, 12 differentially expressed proteins were detected in Zhong s9612 under salt stress, of which 10 were upregulated and 2 were downregulated. In the matrix-assisted laser desorption-ionization/time of flight-time of flight/MS analysis, 14 differentially expressed proteins were successfully identified, including the ribulose-1, 5-bisphosphate carboxylase/oxygenase (RuBisco) large subunit-binding protein subunit alpha (RuBisco α), luminal binding protein (LBP), heat shock protein 70 (Hsp1, 2, 3), pathogenesis-related protein class 10 (PR-10), quinoneoxidoreductase-like protein (QOR), S-adenosylmethioninesyn-thetase (SAMS), enolase (EN), and RuBisco large subunit-binding protein subunit beta (RuBisco β). Cellular function is ultimately executed by proteins, and cotton varieties with different salt tolerance can be influenced by salt stress to various degrees, which can provide certain theoretical foundation for the identification of salt tolerance of cotton varieties. The findings also provide some proteins, such as the RuBisco large subunit binding proteins α and β subunits, OEE2 protein, HSP70, and S-adenosylmethionine synthetase, which can be used as protein markers of salt-to-lerance before- and post-treatment, making a big difference in salt-tolerance identification in cotton.
基金supported by the National Natural Science Foundation of China(31601350)the Project of Transgenic Research from the Ministry of Science and Technology of China(2016ZX08005-004-007)+1 种基金the Fundamental Research Project of Shanxi Province(20210302123381)the Science and Technology Innovation Project of Higher Education Institutions of Shanxi Province(2021L115).
文摘Fiber productivity and quality of cotton are severely affected by abiotic stresses.In this study,we identified the role of GhADF1,an actin depolymerizing factor,in cotton response to drought stress.GhADF1 expression in cotton could be induced by PEG6000.GhADF1-RNAi transgenic cotton showed increased tolerance to drought stress during seed germination and seedling development as well as at the reproductive stage.In contrast,overexpression of GhADF1 led to a drought-sensitive phenotype in transgenic plants.GhADF1-RNAi plants produced an enlarged root system with longer primary roots,more lateral roots,increased root dry biomass,and increased cell size.In leaves of GhADF1-RNAi cotton,proline content and activities of reactive oxygen species-scavenging enzymes were increased following drought stress compared with those in wild type.GhADF1-RNAi lines showed higher water-use efficiency than the wild type,accompanied by reduced leaf stomatal density and conductance.GhADF1-RNAi cotton produced higher fiber yield in the field under both normal and drought conditions.Transcriptomic analyses identified 124 differentially expressed genes in leaves of GhADF1-RNAi lines compared with the wild type following drought treatment.Upregulated genes included those encoding transcription factors,protein kinases,heat shock proteins,and other proteins known to be involved in stress responses.We conclude that GhADF1 reduces the expression of abiotic stress-associated genes in cotton response to drought stress and may be a promising candidate gene for crop improvement by genetic manipulation.
文摘Stepwise selection approach was adopted to obtain glyphosate-tolerant upland cotton mutant(R1098) from the embryogenic calli of Coker 312(Gossypium hirsutum L.).The calli were transferred to selection medium and multi-step selection pressure process was carried out until the
文摘While Upland cotton(Gossypium hirsutum L.) represents 95% of the world production,its genetic improvement is hindered by the shortage of effective genomic tools and resources.The
文摘Background:Potassium(K)deficiency has become a common field production problem following the widespread adoption of Bacillus thuringiensis(Bt)transgenic cotton(Gossypium hirsutum L.)worldwide.The purpose of this study was to clarify whether the introduction of Bt gene directly reduces the K-use efficiency of cotton to induce K deficiency.Results:The cotton variety,Jihe 321(wild type,WT)and its two Bt(Cry1Ac)-transgenic overexpression lines(OE-29317,OE-29312)were studied in field with low soil-test K+(47.8 mg·kg^(−1)).In the field with low soil-test K+,only OE-29317 had less biomass and K+accumulation than the WT at some growth stages.Both Bt lines produced similar or even greater seed cotton yield than WT in the field.When the Bt gene(~70%)in OE-29317 and OE-29312 plants was silenced by virus-induced gene silencing(VIGS),the VIGS-Bt plants did not produce more biomass than VIGSgreen fluorescent protein(control)plants.Conclusions:The introduction of Bt gene did not necessarily hinder the K use efficiency of the cotton lines under this study.
基金the State Key Laboratory of Cotton Biology Open Fund(grant numbers CB2019A03 and CB2018A07)comprehensive Scientific research fund project of Xianyang Normal University(XSYK20002)+2 种基金the Innovation and Entrepreneurship Training Program for College Students in Shaanxi Province(S202010722071)the National Natural Science Foundation of China(grant number 31872175)Key Research and Development Program of Shaanxi Province(grant number 2019NY-103).
文摘Background:Calmodulin(CaM)is one of the most important Ca^(2+)signaling receptors because it regulates diverse physiological and biochemical reactions in plants.CaM functions by interacting with CaM-binding proteins(CaMBPs)to modulate Ca^(2+)signaling.IQ domain(IQD)proteins are plant-specific CaMBPs that bind to CaM by their specific CaM binding sites.Results:In this study,we identified 102 GhIQD genes in the Gossypium hirsutum L.genome.The GhIQD gene family was classified into four clusters(Ⅰ,Ⅱ,Ⅲ,andⅣ),and we then mapped the GhIQD genes to the G.hirsutum L.chromosomes.Moreover,we found that 100 of the 102 GhIQD genes resulted from segmental duplication events,indicating that segmental duplication is the main force driving GhIQD gene expansion.Gene expression pattern analysis showed that a total of 89 GhIQD genes expressed in the elongation stage and second cell wall biosynthesis stage of the fiber cells,suggesting that GhIQD genes may contribute to fiber cell development in cotton.In addition,we found that 20 selected GhIQD genes were highly expressed in various tissues.Exogenous application of MeJA significantly enhanced the expression levels of GhIQD genes.Conclusions:Our study shows that GhIQD genes are involved in fiber cell development in cotton and are also widely induced by MeJA.Thw results provide bases to systematically characterize the evolution and biological functions of GhIQD genes,as well as clues to breed better cotton varieties in the future.
文摘Exotic Gossypium germplasm is a rich source of useful agronomic traits for improvement programs of cultivated cotton.Efficient use of genetic variation available in the wild relatives depends
文摘A permanent doubled haploid population fromthe crossing of G.hirsutum × G.barbadensewere developed by means of Vsg,virescentlymarked semigamy line in sea island cotton,which was characterized by a cytologicalmechanism for developing haploids with certainconvenience,and thus constructed
基金Supported by Key Special Project for Breeding and Cultivation of GMO Varieties(2012ZX08013015)Jiangsu Agriculture Science and Technology Innovation Fund(JASTIF,CX-12-5035)~~
文摘[Objective] The aim of this study was to characterize the national regis- tered varieties selected from cotton regional trials in Yangtze River Valley (YaRV) in recent years. [Method] Cotton cultivar classification and comprehensive evaluation index were set up based on national cotton registration standard. GGE biplot method was adopted to analyze the correlation of major breeding target characters of 53 national registered cotton varieties in cotton regional trials in YaRV during 1981-2012. According to the shift of check cultivars in cotton regional trials in the past, the cotton regional trial practice since 1981 was divided into five periods. The dynamic of cultivar type's proportion and the evaluation index scores was analyzed across the five periods. [Result] There existed intricate interrelationship among cotton breeding target traits, which constrained it necessary to construct indices for com- prehensive evaluation of cotton varieties. The dynamic of cultivar types in the five periods indicated that type II varieties emerged since Simian 3 period and then its proportion decreased gradually; type Ⅲ varieties maintained a certain proportion in each period and kept on the rise overall; type Ⅳvarieties occupied the majority pro- portion of registered cultivars before 1993, but a minor proportion since Simian 3 period. On the other side, the change trend of the evaluation index demonstrated that the varieties registered before 2003 did not pass the qualified line at present. The peak scores appeared in the varieties registered during 2004-2008. The scores of the varieties registered after 2009 were only slightly over the qualified line. [Conclusion] More attention should be paid to the improvement and evaluation of micronaire, so as to guide the simultaneous development of high yielding and fiber quality in cotton breeding and registration procedure in YaRV.
文摘The short season cotton(SSC) was important Upland plant ecotype(Gossypium hirsutum L.).The growth of SSC was very short that is 105 ~ 110 days(after planting). SSC could increase
基金This work was supported by the National Natural Science Foundation of China (No 30530490,30370904,and 30671258)the National High Technology Research and Development Program(863project) of China (No 2006AA10Z121)the Program for New Century Excellent Talentsin Uni-versity (No NCET-07-0712)
文摘As one of the longest cells characterized in plant kingdom,cotton fibers were regarded as an ideal material for studying plant cell growth and development.In recent years,several reports revealed