The traditional method to refine crude cottonseed oil is time-consuming and expensive.This study evaluates the effectiveness of coagulation–flocculation–sedimentation process using quaternary polyamine-based polymer...The traditional method to refine crude cottonseed oil is time-consuming and expensive.This study evaluates the effectiveness of coagulation–flocculation–sedimentation process using quaternary polyamine-based polymers in refining crude cottonseed oil.Flocculated by four commercial polyamine-based cationic polymers(SL2700,SL3000,SL4500 and SL5000)with varied molecular weight(MW)and charge density(CD)and followed by coagulation with sodium hydroxide,crude cottonseed oil can be effectively purified.Free fatty acids,gossypol,pigments and trace elements are all effectively and sufficiently removed by the four polymers in a MW-and CDdependent manner.Our results suggest that the use of polyamine-based cationic polymers may offer an effective and feasible alternative to the traditional method for crude cottonseed oil refining.展开更多
Information about the effects of phenotype traits on cottonseed protein, oil, and nutrients is scarce. The objective of this research was to investigate the effects of leaf color trait on seed nutrition in near-isogen...Information about the effects of phenotype traits on cottonseed protein, oil, and nutrients is scarce. The objective of this research was to investigate the effects of leaf color trait on seed nutrition in near-isogenic Gossypium hirsutum cotton expressing green (G) and yellow (Y) leaf color phenotypes. Our hypothesis was that leaf color can influence the accumulation of nutrients in seeds. Sets of isogenic lines were: DES 119 (G) and DES 119 (Y);DP 5690 (G) and DP 5690 (Y);MD 51ne (G) and MD 51ne (Y);SG 747 (G) and SG 747 (Y). Each NIL set is 98.44 % identical. Parent line SA 30 (P) was used as the control. The experiment was repeated for two years (2014 and 2015). The results showed that, in 2014, seed oil in DES 119 (G) and SG 747 (G) were significantly higher than their equivalent yellow lines. Green lines showed higher content of phosphorus compared with yellow lines. Higher levels of Cu, Fe, Mn, Ni, and Zn were recorded in DES 119 (G) and MD 51ne (G). In 2015, seed protein, oil, C, N, P, B, Cu, and Fe were higher in green lines than in yellow lines. There was a significant correlation between protein and nutrients, and between oil and nutrients in 2015, but not in 2014 as the temperature was warmer in 2015 than in 2014. This research demonstrated that leaf color can alter seed composition and mineral nutrition under certain environmental growing conditions such as temperature.展开更多
A two-year study was carried out in Giza Agricultural Experiments and Research Station, Agricultural Research Center (ARC), Giza, Egypt in the 2020 and 2021 summer seasons to evaluate the relative tolerance of ten soy...A two-year study was carried out in Giza Agricultural Experiments and Research Station, Agricultural Research Center (ARC), Giza, Egypt in the 2020 and 2021 summer seasons to evaluate the relative tolerance of ten soybean genotypes for cotton leafworm infestation under field conditions. Soybean genotypes H<sub>11</sub>L<sub>145</sub>, H<sub>155</sub>, H<sub>113</sub>, H<sub>4</sub>L<sub>4</sub>, H<sub>15</sub>L<sub>17</sub>, H<sub>129</sub>, H<sub>30</sub>, H<sub>19</sub>L<sub>96</sub>, Giza 111, and Crawford were distributed in randomized complete blocks design with three replications. Soybean genotypes differed significantly for cotton leafworm at the 6<sup>th</sup>, 7<sup>th</sup>, and 8<sup>th</sup> week from sowing. Low values of cotton leafworm assemblages were recorded for H<sub>113</sub>, H<sub>4</sub>L<sub>4</sub>, H<sub>15</sub>L<sub>17</sub>, Giza 111, and H<sub>129</sub>. Low percentages of the larval survival number and weight, as well as the number of the survival of pupa were recorded by feeding on leaves of genotypes H<sub>4</sub>F<sub>4</sub>, H<sub>15</sub>L<sub>17</sub>, and Giza 111 under laboratory conditions. There were significant differences among the studied genotypes in most yield attributes in both seasons. Soybean genotypes H<sub>15</sub>L<sub>17</sub>, Giza 111, H<sub>113</sub>, H<sub>129</sub>, H<sub>19</sub>L<sub>96</sub>, and H<sub>4</sub>L<sub>4 </sub>gave higher seed yield per ha, meanwhile soybean genotypes H<sub>155</sub>, H<sub>19</sub>L<sub>96</sub>, H<sub>30</sub>, Giza 111, and H<sub>15</sub>L<sub>17</sub> had higher seed oil content than the other genotypes in both seasons. The number and weight of larvae surviving, as well as the number of pupa survival, were negatively correlated with leaf total phenols and seed oil content. It can be concluded that soybean genotypes H<sub>15</sub>L<sub>17</sub>, H<sub>4</sub>L<sub>4</sub>, and Giza 111 are promising genotypes with desirable seed oil content for tolerating cotton leafworm infestation in breeding programs.展开更多
氢化植物油以其绿色环保、可再生、燃烧时长等诸多优势在蜡烛材料方面受到越来越多的关注,作为我国五大油料之一的棉籽油(CSO)却鲜有在蜡材方面的应用研究。以棉籽油为原料,镍为催化剂,反应温度170℃,H_2压力275.8 k Pa,反应时间0.5~6...氢化植物油以其绿色环保、可再生、燃烧时长等诸多优势在蜡烛材料方面受到越来越多的关注,作为我国五大油料之一的棉籽油(CSO)却鲜有在蜡材方面的应用研究。以棉籽油为原料,镍为催化剂,反应温度170℃,H_2压力275.8 k Pa,反应时间0.5~6 h,获得不同熔点(32.4~61.9℃)的氢化棉籽油,碘值为1.1~73.0 g/100 g。采用脉冲核磁共振仪、偏光显微镜和X-射线衍射仪对氢化棉籽油的固体脂肪含量、微观形态、晶型等理化特性进行分析。所得氢化棉籽油在微观上均呈细小针状的结构,易于包裹液油,减轻蜡材的油腻感。所得氢化棉籽油晶型以β'为主,并能保持较长时间不变,有利于延缓蜡材在储藏过程中随温度波动产生的起霜现象。氢化棉籽油良好的外观及油脂特性,使其可作为一种植物油基蜡材加以应用。并可进一步改善油脂特性,拓宽原料使用范围及进行性状的优化,获得一款较好的植物油基蜡材。展开更多
基金Supported by the research foundation by the U.S.Cotton Research and Promotion Program,U.S.Department of Agriculture and the Project of Combination of Industry,Education and Research of Ministry of Education of Guangdong Province,China(2011B090400358)
文摘The traditional method to refine crude cottonseed oil is time-consuming and expensive.This study evaluates the effectiveness of coagulation–flocculation–sedimentation process using quaternary polyamine-based polymers in refining crude cottonseed oil.Flocculated by four commercial polyamine-based cationic polymers(SL2700,SL3000,SL4500 and SL5000)with varied molecular weight(MW)and charge density(CD)and followed by coagulation with sodium hydroxide,crude cottonseed oil can be effectively purified.Free fatty acids,gossypol,pigments and trace elements are all effectively and sufficiently removed by the four polymers in a MW-and CDdependent manner.Our results suggest that the use of polyamine-based cationic polymers may offer an effective and feasible alternative to the traditional method for crude cottonseed oil refining.
文摘Information about the effects of phenotype traits on cottonseed protein, oil, and nutrients is scarce. The objective of this research was to investigate the effects of leaf color trait on seed nutrition in near-isogenic Gossypium hirsutum cotton expressing green (G) and yellow (Y) leaf color phenotypes. Our hypothesis was that leaf color can influence the accumulation of nutrients in seeds. Sets of isogenic lines were: DES 119 (G) and DES 119 (Y);DP 5690 (G) and DP 5690 (Y);MD 51ne (G) and MD 51ne (Y);SG 747 (G) and SG 747 (Y). Each NIL set is 98.44 % identical. Parent line SA 30 (P) was used as the control. The experiment was repeated for two years (2014 and 2015). The results showed that, in 2014, seed oil in DES 119 (G) and SG 747 (G) were significantly higher than their equivalent yellow lines. Green lines showed higher content of phosphorus compared with yellow lines. Higher levels of Cu, Fe, Mn, Ni, and Zn were recorded in DES 119 (G) and MD 51ne (G). In 2015, seed protein, oil, C, N, P, B, Cu, and Fe were higher in green lines than in yellow lines. There was a significant correlation between protein and nutrients, and between oil and nutrients in 2015, but not in 2014 as the temperature was warmer in 2015 than in 2014. This research demonstrated that leaf color can alter seed composition and mineral nutrition under certain environmental growing conditions such as temperature.
文摘A two-year study was carried out in Giza Agricultural Experiments and Research Station, Agricultural Research Center (ARC), Giza, Egypt in the 2020 and 2021 summer seasons to evaluate the relative tolerance of ten soybean genotypes for cotton leafworm infestation under field conditions. Soybean genotypes H<sub>11</sub>L<sub>145</sub>, H<sub>155</sub>, H<sub>113</sub>, H<sub>4</sub>L<sub>4</sub>, H<sub>15</sub>L<sub>17</sub>, H<sub>129</sub>, H<sub>30</sub>, H<sub>19</sub>L<sub>96</sub>, Giza 111, and Crawford were distributed in randomized complete blocks design with three replications. Soybean genotypes differed significantly for cotton leafworm at the 6<sup>th</sup>, 7<sup>th</sup>, and 8<sup>th</sup> week from sowing. Low values of cotton leafworm assemblages were recorded for H<sub>113</sub>, H<sub>4</sub>L<sub>4</sub>, H<sub>15</sub>L<sub>17</sub>, Giza 111, and H<sub>129</sub>. Low percentages of the larval survival number and weight, as well as the number of the survival of pupa were recorded by feeding on leaves of genotypes H<sub>4</sub>F<sub>4</sub>, H<sub>15</sub>L<sub>17</sub>, and Giza 111 under laboratory conditions. There were significant differences among the studied genotypes in most yield attributes in both seasons. Soybean genotypes H<sub>15</sub>L<sub>17</sub>, Giza 111, H<sub>113</sub>, H<sub>129</sub>, H<sub>19</sub>L<sub>96</sub>, and H<sub>4</sub>L<sub>4 </sub>gave higher seed yield per ha, meanwhile soybean genotypes H<sub>155</sub>, H<sub>19</sub>L<sub>96</sub>, H<sub>30</sub>, Giza 111, and H<sub>15</sub>L<sub>17</sub> had higher seed oil content than the other genotypes in both seasons. The number and weight of larvae surviving, as well as the number of pupa survival, were negatively correlated with leaf total phenols and seed oil content. It can be concluded that soybean genotypes H<sub>15</sub>L<sub>17</sub>, H<sub>4</sub>L<sub>4</sub>, and Giza 111 are promising genotypes with desirable seed oil content for tolerating cotton leafworm infestation in breeding programs.