The Guanpo pegmatite field in the North Qinling orogenic belt(NQB),China,hosts the most abundant LCT pegmatites.However,their emplacement conditions and structural control remain unexplored.In this contribution,we inv...The Guanpo pegmatite field in the North Qinling orogenic belt(NQB),China,hosts the most abundant LCT pegmatites.However,their emplacement conditions and structural control remain unexplored.In this contribution,we investigated it combining pegmatite orientation measurement with oxygen isotope geothermometry and fluid inclusion study.The orientations of type A1 pegmatites(P_(f)<σ_(2))are predominantly influenced by P-and T-fractures due to simple shearing in Shiziping dextral thrust shear zone during D_(2)deformation,whereas type A2 pegmatites(contemporaneous with D_(4))are governed by hydraulic fractures aligned with S_(0)and S_(0+1)stemming from fluid pressure(P_(f)<σ_(2)).Additionally,type B pegmatites(P_(f)≤σ_(2))exhibit orientations shaped by en echelon extensional fractures in local ductile shear zones(contemporaneous with D_(3)).The albite-quartz oxygen isotope geothermometry and microthermometric analysis of fluid inclusions in elbaites from the latest pegmatites(including types B and A2)suggest that the crystallization P-T for late magmatic and hydrothermal stages are 527.5-559.2℃,320℃,3.1-3.6 kbar and 2.0 kbar,respectively.Our observations along with previous studies suggest that the genesis of the LCT pegmatites was a long-term,multi-stage event during early Paleozoic orogeny(including the collision stage)of the NQB,and was facilitated by various local fractures.展开更多
Crystallineγ-Ga_(2)O_(3)@rGO core-shell nanostructures are synthesized in gram scale,which are accomplished by a facile sonochemical strategy under ambient condition.They are composed of uniformγ-Ga_(2)O_(3)nanosphe...Crystallineγ-Ga_(2)O_(3)@rGO core-shell nanostructures are synthesized in gram scale,which are accomplished by a facile sonochemical strategy under ambient condition.They are composed of uniformγ-Ga_(2)O_(3)nanospheres encapsulated by reduced graphene oxide(rGO)nanolayers,and their formation is mainly attributed to the existed opposite zeta potential between the Ga_(2)O_(3)and rGO.The as-constructed lithium-ion batteries(LIBs)based on as-fabricatedγ-Ga_(2)O_(3)@rGO nanostructures deliver an initial discharge capacity of 1000 mAh g^(-1)at 100 mA g^(-1)and reversible capacity of 600 mAh g^(-1)under 500 mA g^(-1)after 1000 cycles,respectively,which are remarkably higher than those of pristineγ-Ga_(2)O_(3)with a much reduced lifetime of 100 cycles and much lower capacity.Ex situ XRD and XPS analyses demonstrate that the reversible LIBs storage is dominant by a conversion reaction and alloying mechanism,where the discharged product of liquid metal Ga exhibits self-healing ability,thus preventing the destroy of electrodes.Additionally,the rGO shell could act robustly as conductive network of the electrode for significantly improved conductivity,endowing the efficient Li storage behaviors.This work might provide some insight on mass production of advanced electrode materials under mild condition for energy storage and conversion applications.展开更多
Conditioning regimens employed in autologous stem cell transplantation have been proven useful in various hematological disorders and underlying malignancies;however,despite being efficacious in various instances,nega...Conditioning regimens employed in autologous stem cell transplantation have been proven useful in various hematological disorders and underlying malignancies;however,despite being efficacious in various instances,negative consequences have also been recorded.Multiple conditioning regimens were extracted from various literature searches from databases like PubMed,Google scholar,EMBASE,and Cochrane.Conditioning regimens for each disease were compared by using various end points such as overall survival(OS),progression free survival(PFS),and leukemia free survival(LFS).Variables were presented on graphs and analyzed to conclude a more efficacious conditioning regimen.In multiple myeloma,the most effective regimen was high dose melphalan(MEL)given at a dose of 200/mg/m2.The comparative results of acute myeloid leukemia were presented and the regimens that proved to be at an admirable position were busulfan(BU)+MEL regarding OS and BU+VP16 regarding LFS.In case of acute lymphoblastic leukemia(ALL),BU,fludarabine,and etoposide(BuFluVP)conferred good disease control not only with a paramount improvement in survival rate but also low risk of recurrence.However,for ALL,chimeric antigen receptor(CAR)T cell therapy was preferred in the context of better OS and LFS.With respect to Hodgkin’s lymphoma,mitoxantrone(MITO)/MEL overtook carmustine,VP16,cytarabine,and MEL in view of PFS and vice versa regarding OS.Non-Hodgkin’s lymphoma patients were administered MITO(60 mg/m2)and MEL(180 mg/m2)which showed promising results.Lastly,amyloidosis was considered,and the regimen that proved to be competent was MEL 200(200 mg/m2).This review article demonstrates a comparison between various conditioning regimens employed in different diseases.展开更多
Human dental pulp stem cell transplantation has been shown to be an effective therapeutic strategy for spinal cord injury.However,whether the human dental pulp stem cell secretome can contribute to functional recovery...Human dental pulp stem cell transplantation has been shown to be an effective therapeutic strategy for spinal cord injury.However,whether the human dental pulp stem cell secretome can contribute to functional recovery after spinal cord injury remains unclear.In the present study,we established a rat model of spinal cord injury based on impact injury from a dropped weight and then intraperitoneally injected the rats with conditioned medium from human dental pulp stem cells.We found that the conditioned medium effectively promoted the recovery of sensory and motor functions in rats with spinal cord injury,decreased expression of the microglial pyroptosis markers NLRP3,GSDMD,caspase-1,and interleukin-1β,promoted axonal and myelin regeneration,and inhibited the formation of glial scars.In addition,in a lipopolysaccharide-induced BV2 microglia model,conditioned medium from human dental pulp stem cells protected cells from pyroptosis by inhibiting the NLRP3/caspase-1/interleukin-1βpathway.These results indicate that conditioned medium from human dental pulp stem cells can reduce microglial pyroptosis by inhibiting the NLRP3/caspase-1/interleukin-1βpathway,thereby promoting the recovery of neurological function after spinal cord injury.Therefore,conditioned medium from human dental pulp stem cells may become an alternative therapy for spinal cord injury.展开更多
Autophagy and mitophagy pose unresolved challenges in understanding the pathology of diabetic heart condition(DHC),which encompasses a complex range of cardiovascular issues linked to diabetes and associated cardiomyo...Autophagy and mitophagy pose unresolved challenges in understanding the pathology of diabetic heart condition(DHC),which encompasses a complex range of cardiovascular issues linked to diabetes and associated cardiomyopathies.Despite significant progress in reducing mortality rates from cardiovascular diseases(CVDs),heart failure remains a major cause of increased morbidity among diabetic patients.These cellular processes are essential for maintaining cellular balance and removing damaged or dysfunctional components,and their involvement in the development of diabetic heart disease makes them attractive targets for diagnosis and treatment.While a variety of conventional diagnostic and therapeutic strategies are available,DHC continues to present a significant challenge.Point-of-care diagnostics,supported by nanobiosensing techniques,offer a promising alternative for these complex scenarios.Although conventional medications have been widely used in DHC patients,they raise several concerns regarding various physiological aspects.Modern medicine places great emphasis on the application of nanotechnology to target autophagy and mitophagy in DHC,offering a promising approach to deliver drugs beyond the limitations of traditional therapies.This article aims to explore the potential connections between autophagy,mitophagy and DHC,while also discussing the promise of nanotechnology-based theranostic interventions that specifically target these molecular pathways.展开更多
A class of Sturm-Liouville problems with discontinuity is studied in this paper.The oscillation properties of eigenfunctions for Sturm-Liouville problems with interface conditions are obtained.The main method used in ...A class of Sturm-Liouville problems with discontinuity is studied in this paper.The oscillation properties of eigenfunctions for Sturm-Liouville problems with interface conditions are obtained.The main method used in this paper is based on Prufer transformation,which is different from the classical ones.Moreover,we give two examples to verify our main results.展开更多
Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian...Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian-level wind velocity and thermal condition.In this study,a numerical investigation is employed to assess the role of trees planted in the windward direction of the building complex on the thermal and pedestrian wind velocity conditions around/inside a pre-education building located in the center of the complex.Compared to the previous studies(which considered only outside buildings),this work considers the effects of trees on microclimate change both inside/outside buildings.Effects of different parameters including the leaf area density and number of trees,number of rows,far-field velocity magnitude,and thermal condition around the main building are assessed.The results show that the flow velocity in the spacing between the first-row buildings is reduced by 30%-40% when the one-row trees with 2 m height are planted 15 m farther than the buildings.Furthermore,two rows of trees are more effective in higher velocities and reduce the maximum velocity by about 50%.The investigation shows that trees also could reduce the temperature by about 1℃around the building.展开更多
To validate the design rationality of the power coupler for the RFQ cavity and minimize cavity contamination,we designed a low-loss offline conditioning cavity and conducted high-power testing.This offline cavity feat...To validate the design rationality of the power coupler for the RFQ cavity and minimize cavity contamination,we designed a low-loss offline conditioning cavity and conducted high-power testing.This offline cavity features two coupling ports and two tuners,operating at a frequency of 162.5 MHz with a tuning range of 3.2 MHz.Adjusting the installation angle of the coupling ring and the insertion depth of the tuner helps minimize cavity losses.We performed electromagnetic structural and multiphysics simulations,revealing a minimal theoretical power loss of 4.3%.However,when the cavity frequency varied by110 kHz,theoretical power losses increased to10%,necessitating constant tuner adjustments during conditioning.Multiphysics simulations indicated that increased cavity temperature did not affect frequency variation.Upon completion of the offline high-power conditioning platform,we measured the transmission performance,revealing a power loss of 6.3%,exceeding the theoretical calculation.Conditioning utilized efficient automatic range scanning and standing wave resonant methods.To fully condition the power coupler,a 15°phase difference between two standing wave points in the condition-ing system was necessary.Notably,the maximum continuous wave power surpassed 20 kW,exceeding the expected target.展开更多
Erectile dysfunction (ED) is increasingly prevalent in Japan, exceeding 30%, and increasing with age. Unhealthy lifestyle habits, obesity, insufficient exercise, and smoking have been implicated in its pathogenesis, a...Erectile dysfunction (ED) is increasingly prevalent in Japan, exceeding 30%, and increasing with age. Unhealthy lifestyle habits, obesity, insufficient exercise, and smoking have been implicated in its pathogenesis, along with endothelial dysfunction of the corpora cavernosa and impaired blood flow to the penis considered underlying factors. However, the current treatments are limited to Phosphodiesterase-5 (PDE5) inhibitors. ED is the primary symptom of andropathy. This study reports the clinical efficacy of human stem cell-conditioned medium cream for ED treatment. Ten men without underlying diseases suspected of andropause with ED (mean age 43.2 ± 4.4 y, Hb 15.2 ± 0.6 gm/dL, AST/ALT 30.2/37.9 ± 12.4/14.0, eGFR 82.7 ± 12.4 mL/min/1.73 m2) were targeted. The cream was applied twice daily to the genital and scrotal areas. The erectile hardness score (EHS), International Index of Erectile Function-5 (IIEF-5), and Aging Male Symptoms (AMS) scale were used to evaluate the participants before and 30 days after use, and the results were compared using paired t-tests. The post-use qualitative opinions were collected through interviews. Significant improvements were observed compared to baseline in the IIEF-5 (11.8 ± 4.6→17.2 ± 5.1, P < 0.001), and AMS (46.3 ± 6.7→37.6 ± 5.3, P < 0.001) scores post cream use. EHS did not show a statistically significant difference, but a trend towards improvement was observed. Qualitative feedback included increased morning erection, improved maintenance of erection during intercourse, and reduced post work fatigue. Human stem cell-conditioned medium contains endothelial growth factors that potentially contribute to the improvement of ED and andropause by enhancing corporal endothelial function. Future studies should include control groups to further investigate the efficacy of these treatments.展开更多
This paper aims to investigate the multi-soliton solutions of the coupled Lakshmanan–Porsezian–Daniel equations with variable coefficients under nonzero boundary conditions.These equations are utilized to model the ...This paper aims to investigate the multi-soliton solutions of the coupled Lakshmanan–Porsezian–Daniel equations with variable coefficients under nonzero boundary conditions.These equations are utilized to model the phenomenon of nonlinear waves propagating simultaneously in non-uniform optical fibers.By analyzing the Lax pair and the Riemann–Hilbert problem,we aim to provide a comprehensive understanding of the dynamics and interactions of solitons of this system.Furthermore,we study the impacts of group velocity dispersion or the fourth-order dispersion on soliton behaviors.Through appropriate parameter selections,we observe various nonlinear phenomena,including the disappearance of solitons after interaction and their transformation into breather-like solitons,as well as the propagation of breathers with variable periodicity and interactions between solitons with variable periodicities.展开更多
This study evaluated the simulation performance of mesoscale convective system(MCS)-induced precipitation,focusing on three selected cases that originated from the Yellow Sea and propagated toward the Korean Peninsula...This study evaluated the simulation performance of mesoscale convective system(MCS)-induced precipitation,focusing on three selected cases that originated from the Yellow Sea and propagated toward the Korean Peninsula.The evaluation was conducted for the European Centre for Medium-Range Weather Forecasts(ECMWF)and National Centers for Environmental Prediction(NCEP)analysis data,as well as the simulation result using them as initial and lateral boundary conditions for the Weather Research and Forecasting model.Particularly,temperature and humidity profiles from 3D dropsonde observations from the National Center for Meteorological Science of the Korea Meteorological Administration served as validation data.Results showed that the ECMWF analysis consistently had smaller errors compared to the NCEP analysis,which exhibited a cold and dry bias in the lower levels below 850 hPa.The model,in terms of the precipitation simulations,particularly for high-intensity precipitation over the Yellow Sea,demonstrated higher accuracy when applying ECMWF analysis data as the initial condition.This advantage also positively influenced the simulation of rainfall events on the Korean Peninsula by reasonably inducing convective-favorable thermodynamic features(i.e.,warm and humid lower-level atmosphere)over the Yellow Sea.In conclusion,this study provides specific information about two global analysis datasets and their impacts on MCS-induced heavy rainfall simulation by employing dropsonde observation data.Furthermore,it suggests the need to enhance the initial field for MCS-induced heavy rainfall simulation and the applicability of assimilating dropsonde data for this purpose in the future.展开更多
In order to quantify the influence of external forcings on the predictability limit using observational data,the author introduced an algorithm of the conditional nonlinear local Lyapunov exponent(CNLLE)method.The eff...In order to quantify the influence of external forcings on the predictability limit using observational data,the author introduced an algorithm of the conditional nonlinear local Lyapunov exponent(CNLLE)method.The effectiveness of this algorithm is validated and compared with the nonlinear local Lyapunov exponent(NLLE)and signal-to-noise ratio methods using a coupled Lorenz model.The results show that the CNLLE method is able to capture the slow error growth constrained by external forcings,therefore,it can quantify the predictability limit induced by the external forcings.On this basis,a preliminary attempt was made to apply this method to measure the influence of ENSO on the predictability limit for both atmospheric and oceanic variable fields.The spatial distribution of the predictability limit induced by ENSO is similar to that arising from the initial conditions calculated by the NLLE method.This similarity supports ENSO as the major predictable signal for weather and climate prediction.In addition,a ratio of predictability limit(RPL)calculated by the CNLLE method to that calculated by the NLLE method was proposed.The RPL larger than 1 indicates that the external forcings can significantly benefit the long-term predictability limit.For instance,ENSO can effectively extend the predictability limit arising from the initial conditions of sea surface temperature over the tropical Indian Ocean by approximately four months,as well as the predictability limit of sea level pressure over the eastern and western Pacific Ocean.Moreover,the impact of ENSO on the geopotential height predictability limit is primarily confined to the troposphere.展开更多
The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper stud...The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions.展开更多
Tectonism is one of the dominant factors affecting the shale pore structure.However,the control of shale pore structure by tectonic movements is still controversial,which limits the research progress of shale gas accu...Tectonism is one of the dominant factors affecting the shale pore structure.However,the control of shale pore structure by tectonic movements is still controversial,which limits the research progress of shale gas accumulation mechanism in the complex tectonic region of southern China.In this study,34 samples were collected from two exploratory wells located in different tectonic locations.Diverse experiments,e.g.,organic geochemistry,XRD analysis,FE-SEM,low-pressure gas adsorption,and high-pressure mercury intrusion,were conducted to fully characterize the shale reservoir.The TOC,Ro,and mineral composition of the shale samples between the two wells are similar,which reflects that the shale samples of the two wells have proximate pores-generating capacity and pores-supporting capacity.However,the pore characteristics of shale samples from two wells are significantly different.Compared with the stabilized zone shale,the porosity,pore volume,and specific surface area of the deformed zone shale were reduced by 60.61%,64.85%,and 27.81%,respectively.Moreover,the macroscopic and fine pores were reduced by 54.01%and 84.95%,respectively.Fault activity and uplift denudation are not conducive to pore preservation,and the rigid basement of Huangling uplift can promote pore preservation.These three factors are important reasons for controlling the difference in pore structure between two wells shales.We established a conceptual model of shale pores evolution under different tectonic preservation conditions.This study is significant to clarify the scale of shale gas formation and enrichment in complex tectonic regions,and helps in the selection of shale sweet spots.展开更多
Automated pavement condition survey is of critical importance to road network management.There are three primary tasks involved in pavement condition surveys,namely data collection,data processing and condition evalua...Automated pavement condition survey is of critical importance to road network management.There are three primary tasks involved in pavement condition surveys,namely data collection,data processing and condition evaluation.Artificial intelligence(AI)has achieved many breakthroughs in almost every aspect of modern technology over the past decade,and undoubtedly offers a more robust approach to automated pavement condition survey.This article aims to provide a comprehensive review on data collection systems,data processing algorithms and condition evaluation methods proposed between 2010 and 2023 for intelligent pavement condition survey.In particular,the data collection system includes AI-driven hardware devices and automated pavement data collection vehicles.The AI-driven hardware devices including right-of-way(ROW)cameras,ground penetrating radar(GPR)devices,light detection and ranging(LiDAR)devices,and advanced laser imaging systems,etc.These different hardware components can be selectively mounted on a vehicle to simultaneously collect multimedia information about the pavement.In addition,this article pays close attention to the application of artificial intelligence methods in detecting pavement distresses,measuring pavement roughness,identifying pavement rutting,analyzing skid resistance and evaluating structural strength of pavements.Based upon the analysis of a variety of the state-of-the-art artificial intelligence methodologies,remaining challenges and future needs with respect to intelligent pavement condition survey are discussed eventually.展开更多
Structural damage in heterogeneousmaterials typically originates frommicrostructures where stress concentration occurs.Therefore,evaluating the magnitude and location of localized stress distributions within microstru...Structural damage in heterogeneousmaterials typically originates frommicrostructures where stress concentration occurs.Therefore,evaluating the magnitude and location of localized stress distributions within microstructures under external loading is crucial.Repeating unit cells(RUCs)are commonly used to represent microstructural details and homogenize the effective response of composites.This work develops a machine learning-based micromechanics tool to accurately predict the stress distributions of extracted RUCs.The locally exact homogenization theory efficiently generates the microstructural stresses of RUCs with a wide range of parameters,including volume fraction,fiber/matrix property ratio,fiber shapes,and loading direction.Subsequently,the conditional generative adversarial network(cGAN)is employed and constructed as a surrogate model to establish the statistical correlation between these parameters and the corresponding localized stresses.The stresses predicted by cGAN are validated against the remaining true data not used for training,showing good agreement.This work demonstrates that the cGAN-based micromechanics tool effectively captures the local responses of composite RUCs.It can be used for predicting potential crack initiations starting from microstructures and evaluating the effective behavior of periodic composites.展开更多
Background The development of a sustainable business model with social acceptance,makes necessary to develop new strategies to guarantee the growth,health,and well-being of farmed animals.Debaryomyces hansenii is a ye...Background The development of a sustainable business model with social acceptance,makes necessary to develop new strategies to guarantee the growth,health,and well-being of farmed animals.Debaryomyces hansenii is a yeast species that can be used as a probiotic in aquaculture due to its capacity to i)promote cell proliferation and differen-tiation,ii)have immunostimulatory effects,iii)modulate gut microbiota,and/or iv)enhance the digestive function.To provide inside into the effects of D.hansenii on juveniles of gilthead seabream(Sparus aurata)condition,we inte-grated the evaluation of the main key performance indicators coupled with the integrative analysis of the intestine condition,through histological and microbiota state,and its transcriptomic profiling.Results After 70 days of a nutritional trial in which a diet with low levels of fishmeal(7%)was supplemented with 1.1%of D.hansenii(17.2×10^(5) CFU),an increase of ca.12%in somatic growth was observed together with an improve-ment in feed conversion in fish fed a yeast-supplemented diet.In terms of intestinal condition,this probiotic modu-lated gut microbiota without affecting the intestine cell organization,whereas an increase in the staining intensity of mucins rich in carboxylated and weakly sulphated glycoconjugates coupled with changes in the affinity for certain lectins were noted in goblet cells.Changes in microbiota were characterized by the reduction in abundance of several groups of Proteobacteria,especially those characterized as opportunistic groups.The microarrays-based transcrip-tomic analysis found 232 differential expressed genes in the anterior-mid intestine of S.aurata,that were mostly related to metabolic,antioxidant,immune,and symbiotic processes.Conclusions Dietary administration of D.hansenii enhanced somatic growth and improved feed efficiency param-eters,results that were coupled to an improvement of intestinal condition as histochemical and transcriptomic tools indicated.This probiotic yeast stimulated host-microbiota interactions without altering the intestinal cell organization nor generating dysbiosis,which demonstrated its safety as a feed additive.At the transcriptomic level,D.hansenii pro-moted metabolic pathways,mainly protein-related,sphingolipid,and thymidylate pathways,in addition to enhance antioxidant-related intestinal mechanisms,and to regulate sentinel immune processes,potentiating the defensive capacity meanwhile maintaining the homeostatic status of the intestine.展开更多
Soil aggregate is the basic structural unit of soil,which is the foundation for supporting ecosystem functions,while its composition and stability is significantly affected by the external environment.This study was c...Soil aggregate is the basic structural unit of soil,which is the foundation for supporting ecosystem functions,while its composition and stability is significantly affected by the external environment.This study was conducted to explore the effect of external environment(wetting-drying cycles and acidic conditions)on the soil aggregate distribution and stability and identify the key soil physicochemical factors that affect the soil aggregate stability.The yellow‒brown soil from the Three Gorges Reservoir area(TGRA)was used,and 8 wetting-drying conditions(0,1,2,3,4,5,10 and 15 cycles)were simulated under 4 acidic conditions(pH=3,4,5 and 7).The particle size distribution and soil aggregate stability were determined by wet sieving method,the contribution of environmental factors(acid condition,wetting-drying cycle and their combined action)to the soil aggregate stability was clarified and the key soil physicochemical factors that affect the soil aggregate stability under wetting-drying cycles and acidic conditions were determined by using the Pearson’s correlation analysis,Partial least squares path modeling(PLS‒PM)and multiple linear regression analysis.The results indicate that wetting-drying cycles and acidic conditions have significant effects on the stability of soil aggregates,the soil aggregate stability gradually decreases with increasing number of wetting-drying cycles and it obviously decreases with the increase of acidity.Moreover,the combination of wetting-drying cycles and acidic conditions aggravate the reduction in the soil aggregate stability.The wetting-drying cycles,acidic conditions and their combined effect imposes significant impact on the soil aggregate stability,and the wetting-drying cycles exert the greatest influence.The soil aggregate stability is significantly correlated with the pH,Ca^(2+),Mg^(2+),maximum disintegration index(MDI)and soil bulk density(SBD).The PLS‒PM and multiple linear regression analysis further reveal that the soil aggregate stability is primarily influenced by SBD,Ca^(2+),and MDI.These results offer a scientific basis for understanding the soil aggregate breakdown mechanism and are helpful for clarifying the coupled effect of wetting-drying cycles and acid rain on terrestrial ecosystems in the TGRA.展开更多
High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an eff...High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS.展开更多
Structural health monitoring is widely utilized in outdoor environments,especially under harsh conditions,which can introduce noise into the monitoring system.Therefore,designing an effective denoising strategy to enh...Structural health monitoring is widely utilized in outdoor environments,especially under harsh conditions,which can introduce noise into the monitoring system.Therefore,designing an effective denoising strategy to enhance the performance of guided wave damage detection in noisy environments is crucial.This paper introduces a local temporal principal component analysis(PCA)reconstruction approach for denoising guided waves prior to implementing unsupervised damage detection,achieved through novel autoencoder-based reconstruction.Experimental results demonstrate that the proposed denoising method significantly enhances damage detection performance when guided waves are contaminated by noise,with SNR values ranging from 10 to-5 dB.Following the implementation of the proposed denoising approach,the AUC score can elevate from 0.65 to 0.96 when dealing with guided waves corrputed by noise at a level of-5 dB.Additionally,the paper provides guidance on selecting the appropriate number of components used in the denoising PCA reconstruction,aiding in the optimization of the damage detection in noisy conditions.展开更多
基金supported by the National Key R&D Program of China(Grant Nos.2021YFC2901902 and 2019YFC0605202)。
文摘The Guanpo pegmatite field in the North Qinling orogenic belt(NQB),China,hosts the most abundant LCT pegmatites.However,their emplacement conditions and structural control remain unexplored.In this contribution,we investigated it combining pegmatite orientation measurement with oxygen isotope geothermometry and fluid inclusion study.The orientations of type A1 pegmatites(P_(f)<σ_(2))are predominantly influenced by P-and T-fractures due to simple shearing in Shiziping dextral thrust shear zone during D_(2)deformation,whereas type A2 pegmatites(contemporaneous with D_(4))are governed by hydraulic fractures aligned with S_(0)and S_(0+1)stemming from fluid pressure(P_(f)<σ_(2)).Additionally,type B pegmatites(P_(f)≤σ_(2))exhibit orientations shaped by en echelon extensional fractures in local ductile shear zones(contemporaneous with D_(3)).The albite-quartz oxygen isotope geothermometry and microthermometric analysis of fluid inclusions in elbaites from the latest pegmatites(including types B and A2)suggest that the crystallization P-T for late magmatic and hydrothermal stages are 527.5-559.2℃,320℃,3.1-3.6 kbar and 2.0 kbar,respectively.Our observations along with previous studies suggest that the genesis of the LCT pegmatites was a long-term,multi-stage event during early Paleozoic orogeny(including the collision stage)of the NQB,and was facilitated by various local fractures.
基金supported by National Natural Science Foundation of China(NSFC,Grant No.51972178)Natural Science Foundation of Ningbo(2022J139)Ningbo Yongjiang Talent Introduction Programme(2022A-227-G)
文摘Crystallineγ-Ga_(2)O_(3)@rGO core-shell nanostructures are synthesized in gram scale,which are accomplished by a facile sonochemical strategy under ambient condition.They are composed of uniformγ-Ga_(2)O_(3)nanospheres encapsulated by reduced graphene oxide(rGO)nanolayers,and their formation is mainly attributed to the existed opposite zeta potential between the Ga_(2)O_(3)and rGO.The as-constructed lithium-ion batteries(LIBs)based on as-fabricatedγ-Ga_(2)O_(3)@rGO nanostructures deliver an initial discharge capacity of 1000 mAh g^(-1)at 100 mA g^(-1)and reversible capacity of 600 mAh g^(-1)under 500 mA g^(-1)after 1000 cycles,respectively,which are remarkably higher than those of pristineγ-Ga_(2)O_(3)with a much reduced lifetime of 100 cycles and much lower capacity.Ex situ XRD and XPS analyses demonstrate that the reversible LIBs storage is dominant by a conversion reaction and alloying mechanism,where the discharged product of liquid metal Ga exhibits self-healing ability,thus preventing the destroy of electrodes.Additionally,the rGO shell could act robustly as conductive network of the electrode for significantly improved conductivity,endowing the efficient Li storage behaviors.This work might provide some insight on mass production of advanced electrode materials under mild condition for energy storage and conversion applications.
文摘Conditioning regimens employed in autologous stem cell transplantation have been proven useful in various hematological disorders and underlying malignancies;however,despite being efficacious in various instances,negative consequences have also been recorded.Multiple conditioning regimens were extracted from various literature searches from databases like PubMed,Google scholar,EMBASE,and Cochrane.Conditioning regimens for each disease were compared by using various end points such as overall survival(OS),progression free survival(PFS),and leukemia free survival(LFS).Variables were presented on graphs and analyzed to conclude a more efficacious conditioning regimen.In multiple myeloma,the most effective regimen was high dose melphalan(MEL)given at a dose of 200/mg/m2.The comparative results of acute myeloid leukemia were presented and the regimens that proved to be at an admirable position were busulfan(BU)+MEL regarding OS and BU+VP16 regarding LFS.In case of acute lymphoblastic leukemia(ALL),BU,fludarabine,and etoposide(BuFluVP)conferred good disease control not only with a paramount improvement in survival rate but also low risk of recurrence.However,for ALL,chimeric antigen receptor(CAR)T cell therapy was preferred in the context of better OS and LFS.With respect to Hodgkin’s lymphoma,mitoxantrone(MITO)/MEL overtook carmustine,VP16,cytarabine,and MEL in view of PFS and vice versa regarding OS.Non-Hodgkin’s lymphoma patients were administered MITO(60 mg/m2)and MEL(180 mg/m2)which showed promising results.Lastly,amyloidosis was considered,and the regimen that proved to be competent was MEL 200(200 mg/m2).This review article demonstrates a comparison between various conditioning regimens employed in different diseases.
基金supported by the Research Foundation of Technology Committee of Tongzhou District,No.KJ2019CX001(to SX).
文摘Human dental pulp stem cell transplantation has been shown to be an effective therapeutic strategy for spinal cord injury.However,whether the human dental pulp stem cell secretome can contribute to functional recovery after spinal cord injury remains unclear.In the present study,we established a rat model of spinal cord injury based on impact injury from a dropped weight and then intraperitoneally injected the rats with conditioned medium from human dental pulp stem cells.We found that the conditioned medium effectively promoted the recovery of sensory and motor functions in rats with spinal cord injury,decreased expression of the microglial pyroptosis markers NLRP3,GSDMD,caspase-1,and interleukin-1β,promoted axonal and myelin regeneration,and inhibited the formation of glial scars.In addition,in a lipopolysaccharide-induced BV2 microglia model,conditioned medium from human dental pulp stem cells protected cells from pyroptosis by inhibiting the NLRP3/caspase-1/interleukin-1βpathway.These results indicate that conditioned medium from human dental pulp stem cells can reduce microglial pyroptosis by inhibiting the NLRP3/caspase-1/interleukin-1βpathway,thereby promoting the recovery of neurological function after spinal cord injury.Therefore,conditioned medium from human dental pulp stem cells may become an alternative therapy for spinal cord injury.
文摘Autophagy and mitophagy pose unresolved challenges in understanding the pathology of diabetic heart condition(DHC),which encompasses a complex range of cardiovascular issues linked to diabetes and associated cardiomyopathies.Despite significant progress in reducing mortality rates from cardiovascular diseases(CVDs),heart failure remains a major cause of increased morbidity among diabetic patients.These cellular processes are essential for maintaining cellular balance and removing damaged or dysfunctional components,and their involvement in the development of diabetic heart disease makes them attractive targets for diagnosis and treatment.While a variety of conventional diagnostic and therapeutic strategies are available,DHC continues to present a significant challenge.Point-of-care diagnostics,supported by nanobiosensing techniques,offer a promising alternative for these complex scenarios.Although conventional medications have been widely used in DHC patients,they raise several concerns regarding various physiological aspects.Modern medicine places great emphasis on the application of nanotechnology to target autophagy and mitophagy in DHC,offering a promising approach to deliver drugs beyond the limitations of traditional therapies.This article aims to explore the potential connections between autophagy,mitophagy and DHC,while also discussing the promise of nanotechnology-based theranostic interventions that specifically target these molecular pathways.
基金Supported by the Natural Science Foundation of Shandong Province(ZR2023MA023,ZR2021MA047)Guangdong Provincial Featured Innovation Projects of High School(2023KTSCX067).
文摘A class of Sturm-Liouville problems with discontinuity is studied in this paper.The oscillation properties of eigenfunctions for Sturm-Liouville problems with interface conditions are obtained.The main method used in this paper is based on Prufer transformation,which is different from the classical ones.Moreover,we give two examples to verify our main results.
文摘Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian-level wind velocity and thermal condition.In this study,a numerical investigation is employed to assess the role of trees planted in the windward direction of the building complex on the thermal and pedestrian wind velocity conditions around/inside a pre-education building located in the center of the complex.Compared to the previous studies(which considered only outside buildings),this work considers the effects of trees on microclimate change both inside/outside buildings.Effects of different parameters including the leaf area density and number of trees,number of rows,far-field velocity magnitude,and thermal condition around the main building are assessed.The results show that the flow velocity in the spacing between the first-row buildings is reduced by 30%-40% when the one-row trees with 2 m height are planted 15 m farther than the buildings.Furthermore,two rows of trees are more effective in higher velocities and reduce the maximum velocity by about 50%.The investigation shows that trees also could reduce the temperature by about 1℃around the building.
基金supported by the Chinese initiative accelerator driven subcritical system and the hundred talents plan of the Chinese Academy of Sciences(No.E129841Y).
文摘To validate the design rationality of the power coupler for the RFQ cavity and minimize cavity contamination,we designed a low-loss offline conditioning cavity and conducted high-power testing.This offline cavity features two coupling ports and two tuners,operating at a frequency of 162.5 MHz with a tuning range of 3.2 MHz.Adjusting the installation angle of the coupling ring and the insertion depth of the tuner helps minimize cavity losses.We performed electromagnetic structural and multiphysics simulations,revealing a minimal theoretical power loss of 4.3%.However,when the cavity frequency varied by110 kHz,theoretical power losses increased to10%,necessitating constant tuner adjustments during conditioning.Multiphysics simulations indicated that increased cavity temperature did not affect frequency variation.Upon completion of the offline high-power conditioning platform,we measured the transmission performance,revealing a power loss of 6.3%,exceeding the theoretical calculation.Conditioning utilized efficient automatic range scanning and standing wave resonant methods.To fully condition the power coupler,a 15°phase difference between two standing wave points in the condition-ing system was necessary.Notably,the maximum continuous wave power surpassed 20 kW,exceeding the expected target.
文摘Erectile dysfunction (ED) is increasingly prevalent in Japan, exceeding 30%, and increasing with age. Unhealthy lifestyle habits, obesity, insufficient exercise, and smoking have been implicated in its pathogenesis, along with endothelial dysfunction of the corpora cavernosa and impaired blood flow to the penis considered underlying factors. However, the current treatments are limited to Phosphodiesterase-5 (PDE5) inhibitors. ED is the primary symptom of andropathy. This study reports the clinical efficacy of human stem cell-conditioned medium cream for ED treatment. Ten men without underlying diseases suspected of andropause with ED (mean age 43.2 ± 4.4 y, Hb 15.2 ± 0.6 gm/dL, AST/ALT 30.2/37.9 ± 12.4/14.0, eGFR 82.7 ± 12.4 mL/min/1.73 m2) were targeted. The cream was applied twice daily to the genital and scrotal areas. The erectile hardness score (EHS), International Index of Erectile Function-5 (IIEF-5), and Aging Male Symptoms (AMS) scale were used to evaluate the participants before and 30 days after use, and the results were compared using paired t-tests. The post-use qualitative opinions were collected through interviews. Significant improvements were observed compared to baseline in the IIEF-5 (11.8 ± 4.6→17.2 ± 5.1, P < 0.001), and AMS (46.3 ± 6.7→37.6 ± 5.3, P < 0.001) scores post cream use. EHS did not show a statistically significant difference, but a trend towards improvement was observed. Qualitative feedback included increased morning erection, improved maintenance of erection during intercourse, and reduced post work fatigue. Human stem cell-conditioned medium contains endothelial growth factors that potentially contribute to the improvement of ED and andropause by enhancing corporal endothelial function. Future studies should include control groups to further investigate the efficacy of these treatments.
基金supported by the Natural Science Foundation of Hebei Province,China (Grant No.A2021502004)the Fundamental Research Funds for the Central Universities (Grant No.2024MS126).
文摘This paper aims to investigate the multi-soliton solutions of the coupled Lakshmanan–Porsezian–Daniel equations with variable coefficients under nonzero boundary conditions.These equations are utilized to model the phenomenon of nonlinear waves propagating simultaneously in non-uniform optical fibers.By analyzing the Lax pair and the Riemann–Hilbert problem,we aim to provide a comprehensive understanding of the dynamics and interactions of solitons of this system.Furthermore,we study the impacts of group velocity dispersion or the fourth-order dispersion on soliton behaviors.Through appropriate parameter selections,we observe various nonlinear phenomena,including the disappearance of solitons after interaction and their transformation into breather-like solitons,as well as the propagation of breathers with variable periodicity and interactions between solitons with variable periodicities.
基金supported by the Korea Meteorological Administration Research and Development Program “Developing Application Technology for Atmospheric Research Aircraft” (Grant No. KMA2018-00222)
文摘This study evaluated the simulation performance of mesoscale convective system(MCS)-induced precipitation,focusing on three selected cases that originated from the Yellow Sea and propagated toward the Korean Peninsula.The evaluation was conducted for the European Centre for Medium-Range Weather Forecasts(ECMWF)and National Centers for Environmental Prediction(NCEP)analysis data,as well as the simulation result using them as initial and lateral boundary conditions for the Weather Research and Forecasting model.Particularly,temperature and humidity profiles from 3D dropsonde observations from the National Center for Meteorological Science of the Korea Meteorological Administration served as validation data.Results showed that the ECMWF analysis consistently had smaller errors compared to the NCEP analysis,which exhibited a cold and dry bias in the lower levels below 850 hPa.The model,in terms of the precipitation simulations,particularly for high-intensity precipitation over the Yellow Sea,demonstrated higher accuracy when applying ECMWF analysis data as the initial condition.This advantage also positively influenced the simulation of rainfall events on the Korean Peninsula by reasonably inducing convective-favorable thermodynamic features(i.e.,warm and humid lower-level atmosphere)over the Yellow Sea.In conclusion,this study provides specific information about two global analysis datasets and their impacts on MCS-induced heavy rainfall simulation by employing dropsonde observation data.Furthermore,it suggests the need to enhance the initial field for MCS-induced heavy rainfall simulation and the applicability of assimilating dropsonde data for this purpose in the future.
基金supported by the National Natural Science Foundation of China(Grant Nos.42225501 and 42105059)the National Key Scientific and Tech-nological Infrastructure project“Earth System Numerical Simula-tion Facility”(EarthLab).
文摘In order to quantify the influence of external forcings on the predictability limit using observational data,the author introduced an algorithm of the conditional nonlinear local Lyapunov exponent(CNLLE)method.The effectiveness of this algorithm is validated and compared with the nonlinear local Lyapunov exponent(NLLE)and signal-to-noise ratio methods using a coupled Lorenz model.The results show that the CNLLE method is able to capture the slow error growth constrained by external forcings,therefore,it can quantify the predictability limit induced by the external forcings.On this basis,a preliminary attempt was made to apply this method to measure the influence of ENSO on the predictability limit for both atmospheric and oceanic variable fields.The spatial distribution of the predictability limit induced by ENSO is similar to that arising from the initial conditions calculated by the NLLE method.This similarity supports ENSO as the major predictable signal for weather and climate prediction.In addition,a ratio of predictability limit(RPL)calculated by the CNLLE method to that calculated by the NLLE method was proposed.The RPL larger than 1 indicates that the external forcings can significantly benefit the long-term predictability limit.For instance,ENSO can effectively extend the predictability limit arising from the initial conditions of sea surface temperature over the tropical Indian Ocean by approximately four months,as well as the predictability limit of sea level pressure over the eastern and western Pacific Ocean.Moreover,the impact of ENSO on the geopotential height predictability limit is primarily confined to the troposphere.
基金funded by the National Natural Science Foundation of China(No.51806236,No.51806239)the Fundamental Research Funds for the Central Universities(No.2015XKMS059)+1 种基金Shaanxi Postdoctoral Fund Project(No.2018BSHEDZZ56)Foundation of Key Laboratory of Thermo-Fluid Science and Engineering(Xi'an Jiaotong University),Ministry of Education(No.KLTFSE2017KF01)。
文摘The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions.
基金supported by the National Natural Science Foundation of China (42122017,41821002)the Hubei Provincial Natural Science Foundation of China (2020CFB501)+1 种基金the Shandong Provincial Key Research and Development Program (2020ZLYS08)the Independent innovation research program of China University of Petroleum (East China) (21CX06001A)。
文摘Tectonism is one of the dominant factors affecting the shale pore structure.However,the control of shale pore structure by tectonic movements is still controversial,which limits the research progress of shale gas accumulation mechanism in the complex tectonic region of southern China.In this study,34 samples were collected from two exploratory wells located in different tectonic locations.Diverse experiments,e.g.,organic geochemistry,XRD analysis,FE-SEM,low-pressure gas adsorption,and high-pressure mercury intrusion,were conducted to fully characterize the shale reservoir.The TOC,Ro,and mineral composition of the shale samples between the two wells are similar,which reflects that the shale samples of the two wells have proximate pores-generating capacity and pores-supporting capacity.However,the pore characteristics of shale samples from two wells are significantly different.Compared with the stabilized zone shale,the porosity,pore volume,and specific surface area of the deformed zone shale were reduced by 60.61%,64.85%,and 27.81%,respectively.Moreover,the macroscopic and fine pores were reduced by 54.01%and 84.95%,respectively.Fault activity and uplift denudation are not conducive to pore preservation,and the rigid basement of Huangling uplift can promote pore preservation.These three factors are important reasons for controlling the difference in pore structure between two wells shales.We established a conceptual model of shale pores evolution under different tectonic preservation conditions.This study is significant to clarify the scale of shale gas formation and enrichment in complex tectonic regions,and helps in the selection of shale sweet spots.
基金the National Natural Science Foundation of China(grant no.51208419).
文摘Automated pavement condition survey is of critical importance to road network management.There are three primary tasks involved in pavement condition surveys,namely data collection,data processing and condition evaluation.Artificial intelligence(AI)has achieved many breakthroughs in almost every aspect of modern technology over the past decade,and undoubtedly offers a more robust approach to automated pavement condition survey.This article aims to provide a comprehensive review on data collection systems,data processing algorithms and condition evaluation methods proposed between 2010 and 2023 for intelligent pavement condition survey.In particular,the data collection system includes AI-driven hardware devices and automated pavement data collection vehicles.The AI-driven hardware devices including right-of-way(ROW)cameras,ground penetrating radar(GPR)devices,light detection and ranging(LiDAR)devices,and advanced laser imaging systems,etc.These different hardware components can be selectively mounted on a vehicle to simultaneously collect multimedia information about the pavement.In addition,this article pays close attention to the application of artificial intelligence methods in detecting pavement distresses,measuring pavement roughness,identifying pavement rutting,analyzing skid resistance and evaluating structural strength of pavements.Based upon the analysis of a variety of the state-of-the-art artificial intelligence methodologies,remaining challenges and future needs with respect to intelligent pavement condition survey are discussed eventually.
基金the support from the National Key R&D Program of China underGrant(Grant No.2020YFA0711700)the National Natural Science Foundation of China(Grant Nos.52122801,11925206,51978609,U22A20254,and U23A20659)G.W.is supported by the National Natural Science Foundation of China(Nos.12002303,12192210 and 12192214).
文摘Structural damage in heterogeneousmaterials typically originates frommicrostructures where stress concentration occurs.Therefore,evaluating the magnitude and location of localized stress distributions within microstructures under external loading is crucial.Repeating unit cells(RUCs)are commonly used to represent microstructural details and homogenize the effective response of composites.This work develops a machine learning-based micromechanics tool to accurately predict the stress distributions of extracted RUCs.The locally exact homogenization theory efficiently generates the microstructural stresses of RUCs with a wide range of parameters,including volume fraction,fiber/matrix property ratio,fiber shapes,and loading direction.Subsequently,the conditional generative adversarial network(cGAN)is employed and constructed as a surrogate model to establish the statistical correlation between these parameters and the corresponding localized stresses.The stresses predicted by cGAN are validated against the remaining true data not used for training,showing good agreement.This work demonstrates that the cGAN-based micromechanics tool effectively captures the local responses of composite RUCs.It can be used for predicting potential crack initiations starting from microstructures and evaluating the effective behavior of periodic composites.
基金financed through the DIETAplus project of JACUMAR(Junta de Cultivos Marinos,MAPAMASpanish government),which is cofunded with FEMP funds(EU)+3 种基金funded by means of grants from the Spanish Government:PID2019-106878RB-I00 and IS was granted with a Postdoctoral fellowship(FJC2020-043933-I)support of Fondecyt iniciación(project number 11221308)Fondecyt regular(project number 11221308)grants(Agencia Nacional de Investigacióny Desarrollo de Chile,Government of Chile),respectivelythe framework of the network LARVAplus“Strategies for the development and im-provement of fish larvae production in Ibero-America”(117RT0521)funded by the Ibero-American Program of Science and Technology for Development(CYTED,Spain)。
文摘Background The development of a sustainable business model with social acceptance,makes necessary to develop new strategies to guarantee the growth,health,and well-being of farmed animals.Debaryomyces hansenii is a yeast species that can be used as a probiotic in aquaculture due to its capacity to i)promote cell proliferation and differen-tiation,ii)have immunostimulatory effects,iii)modulate gut microbiota,and/or iv)enhance the digestive function.To provide inside into the effects of D.hansenii on juveniles of gilthead seabream(Sparus aurata)condition,we inte-grated the evaluation of the main key performance indicators coupled with the integrative analysis of the intestine condition,through histological and microbiota state,and its transcriptomic profiling.Results After 70 days of a nutritional trial in which a diet with low levels of fishmeal(7%)was supplemented with 1.1%of D.hansenii(17.2×10^(5) CFU),an increase of ca.12%in somatic growth was observed together with an improve-ment in feed conversion in fish fed a yeast-supplemented diet.In terms of intestinal condition,this probiotic modu-lated gut microbiota without affecting the intestine cell organization,whereas an increase in the staining intensity of mucins rich in carboxylated and weakly sulphated glycoconjugates coupled with changes in the affinity for certain lectins were noted in goblet cells.Changes in microbiota were characterized by the reduction in abundance of several groups of Proteobacteria,especially those characterized as opportunistic groups.The microarrays-based transcrip-tomic analysis found 232 differential expressed genes in the anterior-mid intestine of S.aurata,that were mostly related to metabolic,antioxidant,immune,and symbiotic processes.Conclusions Dietary administration of D.hansenii enhanced somatic growth and improved feed efficiency param-eters,results that were coupled to an improvement of intestinal condition as histochemical and transcriptomic tools indicated.This probiotic yeast stimulated host-microbiota interactions without altering the intestinal cell organization nor generating dysbiosis,which demonstrated its safety as a feed additive.At the transcriptomic level,D.hansenii pro-moted metabolic pathways,mainly protein-related,sphingolipid,and thymidylate pathways,in addition to enhance antioxidant-related intestinal mechanisms,and to regulate sentinel immune processes,potentiating the defensive capacity meanwhile maintaining the homeostatic status of the intestine.
基金co-funded by the National Natural Science Foundation of China(U204020742277323)+2 种基金the 111 Project of Hubei Province(2021EJD026)the open fund of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University)Ministry of Education(2022KDZ24).
文摘Soil aggregate is the basic structural unit of soil,which is the foundation for supporting ecosystem functions,while its composition and stability is significantly affected by the external environment.This study was conducted to explore the effect of external environment(wetting-drying cycles and acidic conditions)on the soil aggregate distribution and stability and identify the key soil physicochemical factors that affect the soil aggregate stability.The yellow‒brown soil from the Three Gorges Reservoir area(TGRA)was used,and 8 wetting-drying conditions(0,1,2,3,4,5,10 and 15 cycles)were simulated under 4 acidic conditions(pH=3,4,5 and 7).The particle size distribution and soil aggregate stability were determined by wet sieving method,the contribution of environmental factors(acid condition,wetting-drying cycle and their combined action)to the soil aggregate stability was clarified and the key soil physicochemical factors that affect the soil aggregate stability under wetting-drying cycles and acidic conditions were determined by using the Pearson’s correlation analysis,Partial least squares path modeling(PLS‒PM)and multiple linear regression analysis.The results indicate that wetting-drying cycles and acidic conditions have significant effects on the stability of soil aggregates,the soil aggregate stability gradually decreases with increasing number of wetting-drying cycles and it obviously decreases with the increase of acidity.Moreover,the combination of wetting-drying cycles and acidic conditions aggravate the reduction in the soil aggregate stability.The wetting-drying cycles,acidic conditions and their combined effect imposes significant impact on the soil aggregate stability,and the wetting-drying cycles exert the greatest influence.The soil aggregate stability is significantly correlated with the pH,Ca^(2+),Mg^(2+),maximum disintegration index(MDI)and soil bulk density(SBD).The PLS‒PM and multiple linear regression analysis further reveal that the soil aggregate stability is primarily influenced by SBD,Ca^(2+),and MDI.These results offer a scientific basis for understanding the soil aggregate breakdown mechanism and are helpful for clarifying the coupled effect of wetting-drying cycles and acid rain on terrestrial ecosystems in the TGRA.
基金We would like to thank the associate editor and the reviewers for their constructive comments.This work was supported in part by the National Natural Science Foundation of China under Grant 62203234in part by the State Key Laboratory of Robotics of China under Grant 2023-Z03+1 种基金in part by the Natural Science Foundation of Liaoning Province under Grant 2023-BS-025in part by the Research Program of Liaoning Liaohe Laboratory under Grant LLL23ZZ-02-02.
文摘High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS.
基金National Science Foundation of Zhejiang under Contract(LY23E010001)。
文摘Structural health monitoring is widely utilized in outdoor environments,especially under harsh conditions,which can introduce noise into the monitoring system.Therefore,designing an effective denoising strategy to enhance the performance of guided wave damage detection in noisy environments is crucial.This paper introduces a local temporal principal component analysis(PCA)reconstruction approach for denoising guided waves prior to implementing unsupervised damage detection,achieved through novel autoencoder-based reconstruction.Experimental results demonstrate that the proposed denoising method significantly enhances damage detection performance when guided waves are contaminated by noise,with SNR values ranging from 10 to-5 dB.Following the implementation of the proposed denoising approach,the AUC score can elevate from 0.65 to 0.96 when dealing with guided waves corrputed by noise at a level of-5 dB.Additionally,the paper provides guidance on selecting the appropriate number of components used in the denoising PCA reconstruction,aiding in the optimization of the damage detection in noisy conditions.