Static load tests and bearing capacity analyses are carried out for two outer-plated steel-concrete continuous composite beams. The load-deflection curve and the load-strain curve of specimens are obtained and analyze...Static load tests and bearing capacity analyses are carried out for two outer-plated steel-concrete continuous composite beams. The load-deflection curve and the load-strain curve of specimens are obtained and analyzed. The test results indicate that effective cooperation can be achieved by the shearresistant connection between the reinforcement in the negative moment area and the outer-plated steel beam, and the overall working performance of the composite beams is favorable. At the load-bearing limiting state, the plastic strain on the maximum negative and positive moment section becomes fully developed so as to form relatively ideal plastic hinges. With the increase in the reinforcement ratio, the moment-carrying capacity of the composite beams improves significantly, but the ductility of the beams and the rotation ability of the plastic hinges decrease. The formulae for calculating the limit bending capacity in the negative moment area of outer-plated steel-concrete composite beams are proposed based on the test data. The calculated results agree well with the test results.展开更多
Restrained distortional buckling is an important buckling mode of steel-concrete composite box beams(SCCBB)under the hogging moment.Rotational and lateral deformation restraints of the bottom plate by the webs are ess...Restrained distortional buckling is an important buckling mode of steel-concrete composite box beams(SCCBB)under the hogging moment.Rotational and lateral deformation restraints of the bottom plate by the webs are essential factors affecting SCCBB distortional buckling.Based on the stationary potential energy principle,the analytical expressions for the rotational restraint stiffness(RRS)of the web upper edge as well as the RRS and the lateral restraint stiffness(LRS)of the bottom plate were derived.Also,the SCCBB critical moment formula under the hogging moment was derived.Using twenty specimens,the theoretical calculation method is compared with the finite-element method.Results indicate that the theoretical calculation method can effectively and accurately reflect the restraint effect of the studs,top steel flange,and other factors on the bottom plate.Both the RRS and the LRS have a nonlinear coupling relationship with the external loads and the RRS of the web’s upper edge.Under the hogging moment,the RRS of the web upper edge has a certain influence on the SCCBB distortional buckling critical moment.With increasing RRS of the web upper edge,the SCCBB critical moment increases at first and then tends to be stable.展开更多
Currently, for the analysis of complex bridge based on beam element, the calculation of cross-section torsional inertia moment is still an unresolved technical problem. Most current calculation of section torsional in...Currently, for the analysis of complex bridge based on beam element, the calculation of cross-section torsional inertia moment is still an unresolved technical problem. Most current calculation of section torsional inertia moment is an approximate analytic method for two-dimensional cross-section, which is not fully consistent with the actual situation, and do not consider the effects of diaphragm in bridge. In order to analyze accurately cable-stayed bridge, suspension bridge and other complex bridge structures based on beam element, the calculation method of section torsional inertia moment based on finite element method (FEM) is invented in this paper. Firstly, setting up local cantilever fine model with solid element or shell element and applying torsion on the end of cantilever. Secondly, calculating the torsion angle of cantilever by FEM method and then the torsional moment through equivalent beam method. Finally, the examples of the section torsional moment calculation of concrete model with solid element with diaphragm and steel girder box model with shell element with diaphragm are used to verify the calculation method, which is applied to the suspension bridge design and construction control special software SBNA developed by Research Institute of Highway Ministry of Transport. Taizhou Bridge under construction is one of the examples.展开更多
Ten full-scale steel beam-to-column moment connections used in moment-resisting frames (MRFs) were tested to study the failure process, failure mode, strength and plastic rotation capacity. The specimens include one...Ten full-scale steel beam-to-column moment connections used in moment-resisting frames (MRFs) were tested to study the failure process, failure mode, strength and plastic rotation capacity. The specimens include one traditional welded flange-bolted web connection, one traditional fully welded connection, four beam flange strengthened connections, three beam flange weakened connections, and one through-diaphragm connection. The test results show that the connections with flange cover plates or with partly cut beam flanges satisfy the beam plastic rotation demand for ductile MRFs. From the measured stress profiles along the beam flange and beam web depth, the mechanics of brittle fracture at the end of the beam is discussed. Design recommendations for steel beam-to-column moment connections are proposed.展开更多
A theoretical prediction method based on the change of concrete material is proposed to evaluate the ultimate bending moment of concrete beams which have undergone freeze-thaw cycles (PTCs). First, the freeze-thaw d...A theoretical prediction method based on the change of concrete material is proposed to evaluate the ultimate bending moment of concrete beams which have undergone freeze-thaw cycles (PTCs). First, the freeze-thaw damage on concrete material is analyzed and the residual compressive strength is chosen to indicate the freeze-thaw damage. Then, the equivalent block method is employed to simplify the compressive stress-strain curve of the freeze-thaw damaged concrete and the mathematical expression for the ultimate bending moment is obtained. Comparisons of the predicted results with the test data indicate that the ultimate bending moment of concrete beams affected by FTC attack can be predicted by this proposed method. However, the bond-slip behavior and the randomness of freeze-thaw damage will affect the accuracy of the predicted results, especially when the residual compressive strength is less than 50%.展开更多
In order to understand mechanical characters and find out a calculating method for preflex beams used in particular bridge engineering projects, two types of simply supported preflex beams with variable crosssection, ...In order to understand mechanical characters and find out a calculating method for preflex beams used in particular bridge engineering projects, two types of simply supported preflex beams with variable crosssection, preflex beam with alterative web depth and preflex beam with aherative steel flange thickness, are dis- cussed on how to achieve the equivalent moment of inertia and Young' s modulus. Additionally, methods of cal- culating the equivalent bending stiffness and post-cracking deflection are proposed. Results of the experiments on 6 beams agree well with the theoretical analysis, which proves the correctness of the proposed formulas.展开更多
Most reinforced concrete(RC)frame structures did not achieve the "strong column-weak beam" failure mode in recent big earthquakes, resulting in a large number of casualties and significant property loss. To ...Most reinforced concrete(RC)frame structures did not achieve the "strong column-weak beam" failure mode in recent big earthquakes, resulting in a large number of casualties and significant property loss. To deal with this serious problem, a new column-beam relative factor was proposed to characterize the relative yield situation of column ends and beam ends. By limiting the column-beam relative factor, RC frame structures could achieve the "strong column-weak beam" failure mode under the excitation of strong ground motions. The limit values of column-beam relative factor were calculated, analyzed and verified by using structural simulation models for corner columns in the bottom story of structures, which are destroyed most seriously in earthquakes. The results show that the limit values should be analyzed under bi-directional ground motion and with different axial compression ratios of columns. The peak ground acceleration(PGA)of ground motions has no significant effect on the limit values, while the type of strong ground motions has a significant effect on the limit values.展开更多
Based on the second-order moments, this paper derives an analytical expression of the M^2 factor of four-petal Gaussian beam. The results show that the M^2 factor is only determined by the beam order n. The correspond...Based on the second-order moments, this paper derives an analytical expression of the M^2 factor of four-petal Gaussian beam. The results show that the M^2 factor is only determined by the beam order n. The corresponding numerical calculations are also given. As the beam order increases, the augment of M^2 factor is disciplinary. As the expression of M^2 factor is expressed in series form and becomes more complicated, a new concise formula of M^2 factor is also presented by using curve fitting of numerical calculations. When 3 ≤ n ≤ 200, the maximum error rate of fitting formula will not exceed 2.6% and the average error rate is 0.28%. This research is helpful to the applications of four-petal Gaussian beam.展开更多
Based on the propagation equation of higher-order intensity moments, analytical propagation expressions for the kurtosis parameters of a super Lorentz-Gauss (SLG) SLG01 beam through a paraxial and real ABCD optical ...Based on the propagation equation of higher-order intensity moments, analytical propagation expressions for the kurtosis parameters of a super Lorentz-Gauss (SLG) SLG01 beam through a paraxial and real ABCD optical system are derived. By replacing the parameters in the expressions of the kurtosis parameters of the SLC01 beam, the kurtosis parameters of the SLG10 and SLGll beams through a paraxial and real ABCD optical system can be easily obtained. The kurtosis parameters of an SLG01 beam through a paraxial and real ABCD optical system depend on two ratios. One is the ratio of the transfer matrix element B to the product of the transfer matrix element A and the diffraction-free range of the super-Lorentzian part. The other is the ratio of the width parameter of the super-Lorentzian part to the waist of the Gaussian part. As a numerical example, the properties of the kurtosis parameters of an SLG01 beam propagating in free space are illustrated. The influences of different parameters on the kurtosis parameters of an SLG01 beam are analysed in detail.展开更多
The objective of this paper is to study the residual ultimate strength of box beams with impact-induced damage,as a model of what may occur in ship hulls.The bottom and side plates of ship hulls can suffer denting or ...The objective of this paper is to study the residual ultimate strength of box beams with impact-induced damage,as a model of what may occur in ship hulls.The bottom and side plates of ship hulls can suffer denting or fracture damage due to grounding,collision and other contacts during the ship’s service life and these impact-induced damages could result in considerable strength degradation.Box beams are firstly subjected to impact loading and then four-point bending loading is imposed on the damaged structures to assess the residual strength using ANSYS/LS_DYNA.The ultimate moment and collapse modes are discussed considering the effect of impact location.The impact-induced deformation is introduced in the four-point bending simulation,and the impact-induced stress is included or not to determine the effect of residual stress and distortion after impact.It is shown that impact location has significant influence on the residual ultimate bending moment of the damaged box beam providing that the impact energy is kept constant.The collapse modes also change when the impactor strikes on different locations.Damaged hard corner and inclined neutral axes might explain the reduction of ultimate strength and diverse collapse modes.The residual stress in the box beam after impact may increase or decrease the ultimate strength depending on impact location.展开更多
文摘Static load tests and bearing capacity analyses are carried out for two outer-plated steel-concrete continuous composite beams. The load-deflection curve and the load-strain curve of specimens are obtained and analyzed. The test results indicate that effective cooperation can be achieved by the shearresistant connection between the reinforcement in the negative moment area and the outer-plated steel beam, and the overall working performance of the composite beams is favorable. At the load-bearing limiting state, the plastic strain on the maximum negative and positive moment section becomes fully developed so as to form relatively ideal plastic hinges. With the increase in the reinforcement ratio, the moment-carrying capacity of the composite beams improves significantly, but the ductility of the beams and the rotation ability of the plastic hinges decrease. The formulae for calculating the limit bending capacity in the negative moment area of outer-plated steel-concrete composite beams are proposed based on the test data. The calculated results agree well with the test results.
基金Projects(U1934207,52078487,51778630) supported by the National Natural Science Foundations of ChinaProject(502501006) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2019RS3009) supported by the Hunan Innovative Provincial Construction Project,China。
文摘Restrained distortional buckling is an important buckling mode of steel-concrete composite box beams(SCCBB)under the hogging moment.Rotational and lateral deformation restraints of the bottom plate by the webs are essential factors affecting SCCBB distortional buckling.Based on the stationary potential energy principle,the analytical expressions for the rotational restraint stiffness(RRS)of the web upper edge as well as the RRS and the lateral restraint stiffness(LRS)of the bottom plate were derived.Also,the SCCBB critical moment formula under the hogging moment was derived.Using twenty specimens,the theoretical calculation method is compared with the finite-element method.Results indicate that the theoretical calculation method can effectively and accurately reflect the restraint effect of the studs,top steel flange,and other factors on the bottom plate.Both the RRS and the LRS have a nonlinear coupling relationship with the external loads and the RRS of the web’s upper edge.Under the hogging moment,the RRS of the web upper edge has a certain influence on the SCCBB distortional buckling critical moment.With increasing RRS of the web upper edge,the SCCBB critical moment increases at first and then tends to be stable.
基金National Science and Technology Support Program of China(No.2009BAG15B01)Key Programs for Science and Technology Development of Chinese Transportation Industry(No.2008-353-332-190)+1 种基金National Natural Science Foundation of China(No.50908211)Scientific Research Item from Ministry of Transport(No.200831822343)
文摘Currently, for the analysis of complex bridge based on beam element, the calculation of cross-section torsional inertia moment is still an unresolved technical problem. Most current calculation of section torsional inertia moment is an approximate analytic method for two-dimensional cross-section, which is not fully consistent with the actual situation, and do not consider the effects of diaphragm in bridge. In order to analyze accurately cable-stayed bridge, suspension bridge and other complex bridge structures based on beam element, the calculation method of section torsional inertia moment based on finite element method (FEM) is invented in this paper. Firstly, setting up local cantilever fine model with solid element or shell element and applying torsion on the end of cantilever. Secondly, calculating the torsion angle of cantilever by FEM method and then the torsional moment through equivalent beam method. Finally, the examples of the section torsional moment calculation of concrete model with solid element with diaphragm and steel girder box model with shell element with diaphragm are used to verify the calculation method, which is applied to the suspension bridge design and construction control special software SBNA developed by Research Institute of Highway Ministry of Transport. Taizhou Bridge under construction is one of the examples.
文摘Ten full-scale steel beam-to-column moment connections used in moment-resisting frames (MRFs) were tested to study the failure process, failure mode, strength and plastic rotation capacity. The specimens include one traditional welded flange-bolted web connection, one traditional fully welded connection, four beam flange strengthened connections, three beam flange weakened connections, and one through-diaphragm connection. The test results show that the connections with flange cover plates or with partly cut beam flanges satisfy the beam plastic rotation demand for ductile MRFs. From the measured stress profiles along the beam flange and beam web depth, the mechanics of brittle fracture at the end of the beam is discussed. Design recommendations for steel beam-to-column moment connections are proposed.
基金The National Natural Science Foundation of China(No.5097822451378104)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘A theoretical prediction method based on the change of concrete material is proposed to evaluate the ultimate bending moment of concrete beams which have undergone freeze-thaw cycles (PTCs). First, the freeze-thaw damage on concrete material is analyzed and the residual compressive strength is chosen to indicate the freeze-thaw damage. Then, the equivalent block method is employed to simplify the compressive stress-strain curve of the freeze-thaw damaged concrete and the mathematical expression for the ultimate bending moment is obtained. Comparisons of the predicted results with the test data indicate that the ultimate bending moment of concrete beams affected by FTC attack can be predicted by this proposed method. However, the bond-slip behavior and the randomness of freeze-thaw damage will affect the accuracy of the predicted results, especially when the residual compressive strength is less than 50%.
基金Sponsored by the Subsidization Plan for Outstanding Young Teacher of Ministry of Education
文摘In order to understand mechanical characters and find out a calculating method for preflex beams used in particular bridge engineering projects, two types of simply supported preflex beams with variable crosssection, preflex beam with alterative web depth and preflex beam with aherative steel flange thickness, are dis- cussed on how to achieve the equivalent moment of inertia and Young' s modulus. Additionally, methods of cal- culating the equivalent bending stiffness and post-cracking deflection are proposed. Results of the experiments on 6 beams agree well with the theoretical analysis, which proves the correctness of the proposed formulas.
基金Supported by the National Natural Science Foundation of China(No.51525803)the Scientific and Technological Development Plans of Tianjin Construction System(No.2013-35)+1 种基金International Science&Technology Cooperation Program of China(No.2012DFA70810)the Basic Science Research Foundation of IEM,CEA(No.2013B07)
文摘Most reinforced concrete(RC)frame structures did not achieve the "strong column-weak beam" failure mode in recent big earthquakes, resulting in a large number of casualties and significant property loss. To deal with this serious problem, a new column-beam relative factor was proposed to characterize the relative yield situation of column ends and beam ends. By limiting the column-beam relative factor, RC frame structures could achieve the "strong column-weak beam" failure mode under the excitation of strong ground motions. The limit values of column-beam relative factor were calculated, analyzed and verified by using structural simulation models for corner columns in the bottom story of structures, which are destroyed most seriously in earthquakes. The results show that the limit values should be analyzed under bi-directional ground motion and with different axial compression ratios of columns. The peak ground acceleration(PGA)of ground motions has no significant effect on the limit values, while the type of strong ground motions has a significant effect on the limit values.
基金Project supported by the Scientific Research Fund of Zhejiang Provincial Education Department (Grant No 20060677)
文摘Based on the second-order moments, this paper derives an analytical expression of the M^2 factor of four-petal Gaussian beam. The results show that the M^2 factor is only determined by the beam order n. The corresponding numerical calculations are also given. As the beam order increases, the augment of M^2 factor is disciplinary. As the expression of M^2 factor is expressed in series form and becomes more complicated, a new concise formula of M^2 factor is also presented by using curve fitting of numerical calculations. When 3 ≤ n ≤ 200, the maximum error rate of fitting formula will not exceed 2.6% and the average error rate is 0.28%. This research is helpful to the applications of four-petal Gaussian beam.
基金supported by the National Natural Science Foundation of China(Grant No.10974179)the Natural Science Foundation of Zhejiang Province,China(Grant No.Y1090073)
文摘Based on the propagation equation of higher-order intensity moments, analytical propagation expressions for the kurtosis parameters of a super Lorentz-Gauss (SLG) SLG01 beam through a paraxial and real ABCD optical system are derived. By replacing the parameters in the expressions of the kurtosis parameters of the SLC01 beam, the kurtosis parameters of the SLG10 and SLGll beams through a paraxial and real ABCD optical system can be easily obtained. The kurtosis parameters of an SLG01 beam through a paraxial and real ABCD optical system depend on two ratios. One is the ratio of the transfer matrix element B to the product of the transfer matrix element A and the diffraction-free range of the super-Lorentzian part. The other is the ratio of the width parameter of the super-Lorentzian part to the waist of the Gaussian part. As a numerical example, the properties of the kurtosis parameters of an SLG01 beam propagating in free space are illustrated. The influences of different parameters on the kurtosis parameters of an SLG01 beam are analysed in detail.
基金This work contributes to the Strategic Research Plan of the Centre forMarine Technology and Ocean Engineering(CENTEC),which is financed by the Portuguese Foundation for Science and Technology(Fundação para a Ciência e Tecnologia-FCT)under contract UIDB/UIDP/00134/2020.
文摘The objective of this paper is to study the residual ultimate strength of box beams with impact-induced damage,as a model of what may occur in ship hulls.The bottom and side plates of ship hulls can suffer denting or fracture damage due to grounding,collision and other contacts during the ship’s service life and these impact-induced damages could result in considerable strength degradation.Box beams are firstly subjected to impact loading and then four-point bending loading is imposed on the damaged structures to assess the residual strength using ANSYS/LS_DYNA.The ultimate moment and collapse modes are discussed considering the effect of impact location.The impact-induced deformation is introduced in the four-point bending simulation,and the impact-induced stress is included or not to determine the effect of residual stress and distortion after impact.It is shown that impact location has significant influence on the residual ultimate bending moment of the damaged box beam providing that the impact energy is kept constant.The collapse modes also change when the impactor strikes on different locations.Damaged hard corner and inclined neutral axes might explain the reduction of ultimate strength and diverse collapse modes.The residual stress in the box beam after impact may increase or decrease the ultimate strength depending on impact location.