The Zengmu and Beikang basins,separated by the West Baram Line(WBL)in the southwestern South China Sea margin,display distinct geological and geophysical features.However,the nature of the basins and the WBL are debat...The Zengmu and Beikang basins,separated by the West Baram Line(WBL)in the southwestern South China Sea margin,display distinct geological and geophysical features.However,the nature of the basins and the WBL are debated.Here we explore this issue by conducting the stratigraphic and structural interpretation,faults and subsidence analysis,and lithospheric finite extension modelling using seismic data.Results show that the WBL is a trans-extensional fault zone comprising normal faults and flower structures mainly active in the Late Eocene to Early Miocene.The Zengmu Basin,to the southwest of the WBL,shows an overall synformal geometry,thick folded strata in the Late Eocene to Late Miocene(40.4-5.2 Ma),and pretty small normal faults at the basin edge,which imply that the Zengmu Basin is a foreland basin under the Luconia and Borneo collision in the Sarawak since the Eocene.Furthermore,the basin exhibits two stages of subsidence(fast in 40.4-30 Ma and slow in 30-0 Ma);but the amount of observed subsidence and heat flow are both greater than that predicted by crustal thinning.The Beikang Basin,to the NE of the WBL,consists of the syn-rift faulted sub-basins(45-16.4 Ma)and the post-rift less deformed sequences(16.4-0 Ma).The heat flow(~60 mW/m2)is also consistent with that predicted based on crustal thinning,inferring that it is a rifted basin.However,the basin shows three stages of subsidence(fast in 45-30 Ma,uplift in 30-16.4 Ma,and fast in 16.4-0 Ma).In the uplift stage,the strata were partly folded in the Late Oligocene and partly eroded in the Early Miocene,which is probably caused by the flexural bulging in response to the paleo-South China Sea subduction and the subsequent Dangerous Grounds and Borneo collision in the Sabah to the east of the WBL.展开更多
Magnetic data has been widely applied in the tectonic division.High-resolution magnetic data were used to analyze the geotectonic zoning of the South China Sea.Based on the newly compilated magnetic data,the processin...Magnetic data has been widely applied in the tectonic division.High-resolution magnetic data were used to analyze the geotectonic zoning of the South China Sea.Based on the newly compilated magnetic data,the processing results and the distribution of known faults,we consider that the U-shaped line approximately along the South China Sea national boundary of China shown in the magnetic map is a significant geological and geophysical boundary.We first described the linear characteristics of the magnetic data and then applied pseudo-gravity,Euler deconvolution,tilt derivatives,and the texture segmentation method to process the data.Results show that the dividing line between the South China Sea and the surrounding blocks is approximately along this U-shaped line.The dividing line between the South China domain and the South China Sea domain is along with the Dongsha Islands to Xisha Trough,which is different from the previous geophysical zoning results.Our results are almost consistent with those of the gravity data indicating roughly the tectonic zonation along the U-shaped line.展开更多
Using frequency and time domain analysis, the authors analyzed the hydrodynamics and motion behavior of a Truss Spar platform at a water depth of 1500 m in the Liwan 3-1 area of the South China Sea. Firstly, the seake...Using frequency and time domain analysis, the authors analyzed the hydrodynamics and motion behavior of a Truss Spar platform at a water depth of 1500 m in the Liwan 3-1 area of the South China Sea. Firstly, the seakeeping ability is acquired in the frequency domain by calculating the hull's hydrodynamics and comparing with a semi-submersible platform. The random wave analysis for 100-year, 10-year and 1-year return periods in Liwan 3-1 distinctly shows lower heave but larger surge and pitch re-sponses of the Truss Spar than those of a semi-submersible. Secondly, 3-hour motions of the Truss Spar are predicted and compared in the time domain under 100-year return period conditions in Liwan 3-1 and the Gulf of Mexico. Thirdly, the hull/mooring line cou-pled and uncoupled models are compared. Finally, the responses of the Truss Spar under 10-year and 1-year return period conditions are assessed. The results reveal that the mooring line damping reflected by the coupled model distinctly decreases the low frequency motion. The maximum heave response for 100-year return period waves is 1.23m and below 0.1m for the case of 1-year return period.展开更多
Typhoons with erratic movement are studied for their annual frequency of occurrence over the South China Sea and Northwest Pacific,based on 102 years of data (1884—1985).It discovers that the years with higher fre- q...Typhoons with erratic movement are studied for their annual frequency of occurrence over the South China Sea and Northwest Pacific,based on 102 years of data (1884—1985).It discovers that the years with higher fre- quency tend to get together.There are well-defined periods of 12 and 30 years,revealed with the maximum entropy method (MEM),the latter of low-frequency oscillation being clearer.展开更多
基金Supported by the Youth Innovation Promotion Association CASthe National Key Research and Development Program of China(No.2021YFC3100604)+5 种基金the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0205)the Guangzhou Municipal Science and Technology Program(No.201904010285)the K.C.Wong Education Foundation(No.GJTD-2018-13)the Hainan Key Laboratory of Marine Geological Resources and Environment(No.HNHYDZZYHJKF003)the China Geological Survey(No.DD20190378)the National Natural Science Foundation of China(No.42076077)。
文摘The Zengmu and Beikang basins,separated by the West Baram Line(WBL)in the southwestern South China Sea margin,display distinct geological and geophysical features.However,the nature of the basins and the WBL are debated.Here we explore this issue by conducting the stratigraphic and structural interpretation,faults and subsidence analysis,and lithospheric finite extension modelling using seismic data.Results show that the WBL is a trans-extensional fault zone comprising normal faults and flower structures mainly active in the Late Eocene to Early Miocene.The Zengmu Basin,to the southwest of the WBL,shows an overall synformal geometry,thick folded strata in the Late Eocene to Late Miocene(40.4-5.2 Ma),and pretty small normal faults at the basin edge,which imply that the Zengmu Basin is a foreland basin under the Luconia and Borneo collision in the Sarawak since the Eocene.Furthermore,the basin exhibits two stages of subsidence(fast in 40.4-30 Ma and slow in 30-0 Ma);but the amount of observed subsidence and heat flow are both greater than that predicted by crustal thinning.The Beikang Basin,to the NE of the WBL,consists of the syn-rift faulted sub-basins(45-16.4 Ma)and the post-rift less deformed sequences(16.4-0 Ma).The heat flow(~60 mW/m2)is also consistent with that predicted based on crustal thinning,inferring that it is a rifted basin.However,the basin shows three stages of subsidence(fast in 45-30 Ma,uplift in 30-16.4 Ma,and fast in 16.4-0 Ma).In the uplift stage,the strata were partly folded in the Late Oligocene and partly eroded in the Early Miocene,which is probably caused by the flexural bulging in response to the paleo-South China Sea subduction and the subsequent Dangerous Grounds and Borneo collision in the Sabah to the east of the WBL.
基金Supported by the Geological Survey Project of China(Nos.DD20191001,DD20191004,DD20189410)the National Key R&D Program of China(No.2017YFC0602000)。
文摘Magnetic data has been widely applied in the tectonic division.High-resolution magnetic data were used to analyze the geotectonic zoning of the South China Sea.Based on the newly compilated magnetic data,the processing results and the distribution of known faults,we consider that the U-shaped line approximately along the South China Sea national boundary of China shown in the magnetic map is a significant geological and geophysical boundary.We first described the linear characteristics of the magnetic data and then applied pseudo-gravity,Euler deconvolution,tilt derivatives,and the texture segmentation method to process the data.Results show that the dividing line between the South China Sea and the surrounding blocks is approximately along this U-shaped line.The dividing line between the South China domain and the South China Sea domain is along with the Dongsha Islands to Xisha Trough,which is different from the previous geophysical zoning results.Our results are almost consistent with those of the gravity data indicating roughly the tectonic zonation along the U-shaped line.
基金the supports from National Sci-Tech Major Special Item (No. 2008ZX05056-03)
文摘Using frequency and time domain analysis, the authors analyzed the hydrodynamics and motion behavior of a Truss Spar platform at a water depth of 1500 m in the Liwan 3-1 area of the South China Sea. Firstly, the seakeeping ability is acquired in the frequency domain by calculating the hull's hydrodynamics and comparing with a semi-submersible platform. The random wave analysis for 100-year, 10-year and 1-year return periods in Liwan 3-1 distinctly shows lower heave but larger surge and pitch re-sponses of the Truss Spar than those of a semi-submersible. Secondly, 3-hour motions of the Truss Spar are predicted and compared in the time domain under 100-year return period conditions in Liwan 3-1 and the Gulf of Mexico. Thirdly, the hull/mooring line cou-pled and uncoupled models are compared. Finally, the responses of the Truss Spar under 10-year and 1-year return period conditions are assessed. The results reveal that the mooring line damping reflected by the coupled model distinctly decreases the low frequency motion. The maximum heave response for 100-year return period waves is 1.23m and below 0.1m for the case of 1-year return period.
文摘Typhoons with erratic movement are studied for their annual frequency of occurrence over the South China Sea and Northwest Pacific,based on 102 years of data (1884—1985).It discovers that the years with higher fre- quency tend to get together.There are well-defined periods of 12 and 30 years,revealed with the maximum entropy method (MEM),the latter of low-frequency oscillation being clearer.