Based on analyzing the structure and working principle on electric vehicles (EVs) with dual motors coupled by planetarY gears, the control strategy of mode switching was proposed. The power interruption problem on E...Based on analyzing the structure and working principle on electric vehicles (EVs) with dual motors coupled by planetarY gears, the control strategy of mode switching was proposed. The power interruption problem on EVs with automatic mechanical transmission (AMT) shifting was resolved. Based on the speed-torque characteristics of the planetary gears and the principle of the auxiliary motor' s zero speed braking, control features of mode switching were introduced. The mode shifting between the main motor mode and dual motors coupled driving were studied. Matlab/Simulink was adopted as a platform to develop the simulation model of EVs with dual motors drive system and 3 gears AMT. Simulation results demonstrated that the power interruption of dual motors drive system was solved during mode switching. The power requirements of EVs were satisfied, too.展开更多
The transport properties of coupled Brownian motors in rocking ratchet are investigated via solving Langevin equation. By means of velocity, diffusion coefficient, and their ratio (Peclet number), different features...The transport properties of coupled Brownian motors in rocking ratchet are investigated via solving Langevin equation. By means of velocity, diffusion coefficient, and their ratio (Peclet number), different features from a single particle have been found. In the regime of low-to-moderate D, the average velocity of elastically coupled Brownian motors is larger than that of a single Brownian particles; the Peclet number of elastically coupled Brownian motors is peaked functions of intensity of noise D but the Peclet number of a single Brownian motor decreases monotonously with the increase of a single Brownian motor. The results exhibit an interesting cooperative behavior between coupled particles subjected to a rocking force, which can generate directed transport with low randomness or high transport coherence in symmetrical periodic potential.展开更多
On the basis of the traditional mechanical model of a grinding wheel rotor and the mechanical-electric coupling model with ideal sinusoidal supply, taking high-frequency converting current of inverter power switches i...On the basis of the traditional mechanical model of a grinding wheel rotor and the mechanical-electric coupling model with ideal sinusoidal supply, taking high-frequency converting current of inverter power switches into further consideration, a modified mechanical-electric coupling model is created. The created model consists of an inverter, a motorized spindle, a grinding wheel and grinding loads. Some typical non-stationary processes of the grinding system with two different supplies, including the starting, the speed rising and the break in grinding loads, are compared by making use of the created model. One supply is an ideal sinusoidal voltage source, the other is an inverter. The theoretical analysis of the high-order harmonic is also compared with the experimental result. The material strategy of suppressing high-order harmonic mechanical-electric coupling vibration by optimizing inverter operating parameters is proposed.展开更多
On the basis of the transport features and experimental phenomena observed in studies of molecular motors, we propose a double-temperature ratchet model of coupled motors to reveal tile dynamical mechanism of cooperat...On the basis of the transport features and experimental phenomena observed in studies of molecular motors, we propose a double-temperature ratchet model of coupled motors to reveal tile dynamical mechanism of cooperative transport of motors with two heads, where the interactions and asynchrony between two motor heads are taken into account. We investigate the collective unidirectional trans- port of coupled system and find that the direction of motion can be reversed under certain conditions. Reverse motion can be achieved by modulating the coupling strength, coupling free length, and asym- metric coefficient of the periodic potential, which is understood in terms of the effective potential theory. The dependence of the directed current on various parameters is studied systematically. Di- rected transport of coupled Brownian motors can be manipulated and optimized by adjusting the pulsation period or the phase shift of the pulsation temperature.展开更多
In this study, we investigate the collective directed transport of coupled Brownian particles in spatially symmetric periodic potentials under time-periodic pulsating modulations. We find that the coupling between two...In this study, we investigate the collective directed transport of coupled Brownian particles in spatially symmetric periodic potentials under time-periodic pulsating modulations. We find that the coupling between two particles can induce symmetry breaking and consequently collective directed motion. Moreover, the direction of motion can be reversed under certain conditions. The dependence of directed current on various parameters is systematically studied, reverse motion can be achieved by modulating the coupling free length and the phase shift of tile pulsating potential. The dynamical mechanism of these transport properties is understood in terms of the effective-potential theory and the space-time transformation invariance. The directed transport of coupled Brownian motors can be maniplflated and optimized by adjusting the coupling strength, pulsating frequency, or noise intensity.展开更多
Background:Marginal changes in the execution of competitive sports movements can represent a significant change for performance success.However,such differences may emerge only at certain execution intensities and are...Background:Marginal changes in the execution of competitive sports movements can represent a significant change for performance success.However,such differences may emerge only at certain execution intensities and are not easily detectable through conventional biomechanical techniques.This study aimed to investigate if and how competition standard and progression speed affect race walking kinematics from both a conventional and a coordination variability perspective.Methods:Fifteen experienced athletes divided into three groups(elite,international,and national) were studied while race walking on a treadmill at two different speeds(12.0 and 15.5 km/h).Basic gait parameters,the angular displacement of the pelvis and lower limbs,and the variability in continuous relative phase between six different joint couplings were analyzed.Results:Most of the spatio-temporal,kinematic,and coordination variability measures proved sensitive to the change in speed.Conversely,non-linear dynamics measures highlighted differences between athletes of different competition standard when conventional analytical tools were not able to discriminate between different skill levels.Continuous relative phase variability was higher for national level athletes than international and elite in two couplings(pelvis obliquity—hip flex/extension and pelvis rotation—ankle dorsi/plantarflexion) and gait phases(early stance for the first coupling,propulsive phase for the second) that are deemed fundamental for correct technique and performance.Conclusion:Measures of coordination variability showed to be a more sensitive tool for the fine detection of skill-dependent factors in competitive race walking,and showed good potential for being integrated in the assessment and monitoring of sports motor abilities.展开更多
基金Supported by Doctoral Fund of Ministry of Education of China(20101101110012)the National Natural Science Foundationof China(51175040)
文摘Based on analyzing the structure and working principle on electric vehicles (EVs) with dual motors coupled by planetarY gears, the control strategy of mode switching was proposed. The power interruption problem on EVs with automatic mechanical transmission (AMT) shifting was resolved. Based on the speed-torque characteristics of the planetary gears and the principle of the auxiliary motor' s zero speed braking, control features of mode switching were introduced. The mode shifting between the main motor mode and dual motors coupled driving were studied. Matlab/Simulink was adopted as a platform to develop the simulation model of EVs with dual motors drive system and 3 gears AMT. Simulation results demonstrated that the power interruption of dual motors drive system was solved during mode switching. The power requirements of EVs were satisfied, too.
基金The project supported by National Natural Science Foundation of China under Grant No. 10447105 and the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20050027001
文摘The transport properties of coupled Brownian motors in rocking ratchet are investigated via solving Langevin equation. By means of velocity, diffusion coefficient, and their ratio (Peclet number), different features from a single particle have been found. In the regime of low-to-moderate D, the average velocity of elastically coupled Brownian motors is larger than that of a single Brownian particles; the Peclet number of elastically coupled Brownian motors is peaked functions of intensity of noise D but the Peclet number of a single Brownian motor decreases monotonously with the increase of a single Brownian motor. The results exhibit an interesting cooperative behavior between coupled particles subjected to a rocking force, which can generate directed transport with low randomness or high transport coherence in symmetrical periodic potential.
基金National Hi-tech Research and Development Program of China(863 Program,No.2008AA04Z116)and Natural Science Foundation of Hunan Province,China.
文摘On the basis of the traditional mechanical model of a grinding wheel rotor and the mechanical-electric coupling model with ideal sinusoidal supply, taking high-frequency converting current of inverter power switches into further consideration, a modified mechanical-electric coupling model is created. The created model consists of an inverter, a motorized spindle, a grinding wheel and grinding loads. Some typical non-stationary processes of the grinding system with two different supplies, including the starting, the speed rising and the break in grinding loads, are compared by making use of the created model. One supply is an ideal sinusoidal voltage source, the other is an inverter. The theoretical analysis of the high-order harmonic is also compared with the experimental result. The material strategy of suppressing high-order harmonic mechanical-electric coupling vibration by optimizing inverter operating parameters is proposed.
基金This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 11075016 and 11475022), the Scientific Research project of Zhangjiakou city (Grant No. 1611064B), and the Scientific Re- search Funds of Huaqiao University.
文摘On the basis of the transport features and experimental phenomena observed in studies of molecular motors, we propose a double-temperature ratchet model of coupled motors to reveal tile dynamical mechanism of cooperative transport of motors with two heads, where the interactions and asynchrony between two motor heads are taken into account. We investigate the collective unidirectional trans- port of coupled system and find that the direction of motion can be reversed under certain conditions. Reverse motion can be achieved by modulating the coupling strength, coupling free length, and asym- metric coefficient of the periodic potential, which is understood in terms of the effective potential theory. The dependence of the directed current on various parameters is studied systematically. Di- rected transport of coupled Brownian motors can be manipulated and optimized by adjusting the pulsation period or the phase shift of the pulsation temperature.
基金This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 11075016 and 11475022) and the Scientific Research Funds of Huaqiao University.
文摘In this study, we investigate the collective directed transport of coupled Brownian particles in spatially symmetric periodic potentials under time-periodic pulsating modulations. We find that the coupling between two particles can induce symmetry breaking and consequently collective directed motion. Moreover, the direction of motion can be reversed under certain conditions. The dependence of directed current on various parameters is systematically studied, reverse motion can be achieved by modulating the coupling free length and the phase shift of tile pulsating potential. The dynamical mechanism of these transport properties is understood in terms of the effective-potential theory and the space-time transformation invariance. The directed transport of coupled Brownian motors can be maniplflated and optimized by adjusting the coupling strength, pulsating frequency, or noise intensity.
文摘Background:Marginal changes in the execution of competitive sports movements can represent a significant change for performance success.However,such differences may emerge only at certain execution intensities and are not easily detectable through conventional biomechanical techniques.This study aimed to investigate if and how competition standard and progression speed affect race walking kinematics from both a conventional and a coordination variability perspective.Methods:Fifteen experienced athletes divided into three groups(elite,international,and national) were studied while race walking on a treadmill at two different speeds(12.0 and 15.5 km/h).Basic gait parameters,the angular displacement of the pelvis and lower limbs,and the variability in continuous relative phase between six different joint couplings were analyzed.Results:Most of the spatio-temporal,kinematic,and coordination variability measures proved sensitive to the change in speed.Conversely,non-linear dynamics measures highlighted differences between athletes of different competition standard when conventional analytical tools were not able to discriminate between different skill levels.Continuous relative phase variability was higher for national level athletes than international and elite in two couplings(pelvis obliquity—hip flex/extension and pelvis rotation—ankle dorsi/plantarflexion) and gait phases(early stance for the first coupling,propulsive phase for the second) that are deemed fundamental for correct technique and performance.Conclusion:Measures of coordination variability showed to be a more sensitive tool for the fine detection of skill-dependent factors in competitive race walking,and showed good potential for being integrated in the assessment and monitoring of sports motor abilities.