By means of sn-function expansion method and cn-function expansion method, several kinds of explicit solutions to the coupled KdV equations with variable coefficients are obtained, which include three sets of periodic...By means of sn-function expansion method and cn-function expansion method, several kinds of explicit solutions to the coupled KdV equations with variable coefficients are obtained, which include three sets of periodic wave-like solutions. These solutions degenerate to solitary wave-like solutions at a certain limit. Some new solutions are presented.展开更多
In this paper, the genera]ised two-dimensiona] differentia] transform method (DTM) of solving the time-fractiona] coupled KdV equations is proposed. The fractional derivative is described in the Caputo sense. The pr...In this paper, the genera]ised two-dimensiona] differentia] transform method (DTM) of solving the time-fractiona] coupled KdV equations is proposed. The fractional derivative is described in the Caputo sense. The presented method is a numerical method based on the generalised Taylor series expansion which constructs an analytical solution in the form of a polynomial. An illustrative example shows that the genera]ised two-dimensional DTM is effective for the coupled equations.展开更多
Based on the second integrable ease of known two-dimensional Hamiltonian system with a quartie potentiM, we propose a 4 × 4 matrix speetrM problem and derive a hierarchy of coupled KdV equations and their Hamilto...Based on the second integrable ease of known two-dimensional Hamiltonian system with a quartie potentiM, we propose a 4 × 4 matrix speetrM problem and derive a hierarchy of coupled KdV equations and their Hamiltonian structures. It is shown that solutions of the coupled KdV equations in the hierarchy are reduced to solving two compatible systems of ordinary differentiM equations. As an application, quite a few explicit solutions of the coupled KdV equations are obtained via using separability for the second integrable ease of the two-dimensional Hamiltonian system.展开更多
Variable coefficients and Wick-type stochastic fractional coupled KdV equations are investigated. By using the mod- ified fractional sub-equation method, Hermite transform, and white noise theory the exact travelling ...Variable coefficients and Wick-type stochastic fractional coupled KdV equations are investigated. By using the mod- ified fractional sub-equation method, Hermite transform, and white noise theory the exact travelling wave solutions and white noise functional solutions are obtained, including the generalized exponential, hyperbolic, and trigonometric types.展开更多
In this paper,new infinite sequence complex solutions of the coupled Kd V equations are constructed with the help of function transformation and the second kind of elliptic equation.First of all,according to the funct...In this paper,new infinite sequence complex solutions of the coupled Kd V equations are constructed with the help of function transformation and the second kind of elliptic equation.First of all,according to the function transformation,the coupled Kd V equations are changed into the second kind of elliptic equation.Secondly,the new solutions and Bäcklund transformation of the second kind of elliptic equation are applied to search for new infinite sequence complex solutions of the coupled Kd V equations.These solutions include new infinite sequence complex solutions composed by Jacobi elliptic function,hyperbolic function and triangular function.展开更多
The coupled Korteweg-de Vries (CKdV) equation with self-consistent sources (CKdVESCS) and its Lax representation are derived. We present a generalized binary Darboux transformation (GBDT) with an arbitrary time-...The coupled Korteweg-de Vries (CKdV) equation with self-consistent sources (CKdVESCS) and its Lax representation are derived. We present a generalized binary Darboux transformation (GBDT) with an arbitrary time- dependent function for the CKdVESCS as well as the formula for the N-times repeated GBDT. This GBDT provides non-auto-Biicklund transformation between two CKdVESCSs with different degrees of sources and enables us to construct more generM solutions with N arbitrary t-dependent functions. We obtain positon, negaton, complexiton, and negaton- positon solutions of the CKdVESCS.展开更多
Using Ablowitz-Ramani Segur algorithm, the coupled KdV systems are reclassified under the Painlevé integrable sense while the similarity reductions of the model are obtained by using the Clarkson and Kruskal's d...Using Ablowitz-Ramani Segur algorithm, the coupled KdV systems are reclassified under the Painlevé integrable sense while the similarity reductions of the model are obtained by using the Clarkson and Kruskal's direct method. Some new types of Painlevé integrable models including a model with different dispersion relations for two layer fluids are found.展开更多
Amplitude equations governing the nonlinear resonant interaction of equatorial baroclinic and barotropic Rossby waves were derived by Majda and Biello and used as a model for long range interactions (teleconnections...Amplitude equations governing the nonlinear resonant interaction of equatorial baroclinic and barotropic Rossby waves were derived by Majda and Biello and used as a model for long range interactions (teleconnections) between the tropical and midlatitude troposphere. An overview of that derivation is nonlinear wave theory, but not in atmospheric presented and geared to readers versed in sciences. In the course of the derivation, two other sets of asymptotic equations are presented: the long equatorial wave equations and the weakly nonlinear, long equatorial wave equations. A linear transformation recasts the amplitude equations as nonlinear and linearly coupled KdV equations governing the amplitude of two types of modes, each of which consists of a coupled tropical/midlatitude flow. In the limit of Rossby waves with equal dispersion, the transformed amplitude equations become two KdV equations coupled only through nonlinear fluxes. Four numerical integrations are presented which show (i) the interaction of two solitons, one from either mode, (ii) and (iii) the interaction of a soliton in the presence of different mean wind shears, and (iv) the interaction of two solitons mediated by the presence of a mean wind shear.展开更多
Based on the invariant expansion method, some reasonable approximate solutions of coupled Korteweg-de Vries (KdV) equations with different linear dispersion relations have been obtained. These solutions contain not ...Based on the invariant expansion method, some reasonable approximate solutions of coupled Korteweg-de Vries (KdV) equations with different linear dispersion relations have been obtained. These solutions contain not only bell type soliton solutions but also periodic wave solutions that expressed by Jacob/elliptic functions. The results also show that if the arbitrary constants are selected suitably, the approximate solutions may become the exact ones.展开更多
The Hirota-Satsuma coupled KdV equations associated 2 x 2 matrix spectral problem is discussed by the dressing method, which is based on the factorization of integral operator on a line into a product of two Volterra ...The Hirota-Satsuma coupled KdV equations associated 2 x 2 matrix spectral problem is discussed by the dressing method, which is based on the factorization of integral operator on a line into a product of two Volterra integral operators. A new solution is obtained by choosing special kernel of integral operator.展开更多
The simple Lie point symmetry reduction procedure is used to obtain infinitely many symmetries to a new integrable system of coupled KdV equations. Using some symmetry subalgebra of the equations, five types of the si...The simple Lie point symmetry reduction procedure is used to obtain infinitely many symmetries to a new integrable system of coupled KdV equations. Using some symmetry subalgebra of the equations, five types of the significant similarity reductions are obtained by virtue of the Lie group approach, and obtain abundant solutions of the coupled KdV equations, such as the solitary wave solution, exponential solution, rational solution, polynomial solution, etc.展开更多
Kortweg-de Vries (KdV)-typed equations have been used to describe certain nonlinear phenomena in fluids and plasmas. Generalized complex coupled KdV (GCCKdV) equations are investigated in this paper. Through the d...Kortweg-de Vries (KdV)-typed equations have been used to describe certain nonlinear phenomena in fluids and plasmas. Generalized complex coupled KdV (GCCKdV) equations are investigated in this paper. Through the dependent variable transformations and symbolic computation, GCCKdV equations are transformed into their bilinear forms, based on which the one- and two-soliton solutions are obtained. Through the interactions of two solitons, the regular elastic collision are shown. When the wave numbers are complex, three kinds of solitonie collisions are presented: (i) two solitons merge and separate from each other periodically; (ii) two solitons exhibit the attraction and repulsion nearly twice, and finally separate from each other after such type of interaction; (iii) two solitons are ftuctuant in the central region of the collision. Propagation features of solitons are investigated with the effects of the coefficients in the GCCKdV equations considered. Velocity of soliton increase with the a increasing. Amplitude of v increase with the a increasing and decrease with the β increasing.展开更多
An extended F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics is presented, which can be thought of as a concentration of extended Jacobi elliptic function...An extended F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics is presented, which can be thought of as a concentration of extended Jacobi elliptic function expansion method proposed more recently. By using the homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by Jacobi elliptic functions for the coupled KdV equations are derived. In the limit cases, the solitary wave solutions and the other type of travelling wave solutions for the system are also obtained.展开更多
In this paper, Lie symmetry is investigated for a new integrable coupled Korteweg-de Vries (KdV) equation system. Using some symmetry subalgebra of the equation system, we obtain five types of the significant simila...In this paper, Lie symmetry is investigated for a new integrable coupled Korteweg-de Vries (KdV) equation system. Using some symmetry subalgebra of the equation system, we obtain five types of the significant similarity reductions. Abundant solutions of the coupled KdV equation system, such as the solitary wave solution, exponential solution, rational solution and polynomial solution, etc. are obtained from the reduced equations. Especially, one type of group-invarlant solution of reduced equations can be acquired by means of the Painlevé I transcendent function.展开更多
Using the direct method for a coupled KdV system, six types of the similarity reductions are obtained. The group explanation of the results is also given. It is pointed out that, in order to find all the results by no...Using the direct method for a coupled KdV system, six types of the similarity reductions are obtained. The group explanation of the results is also given. It is pointed out that, in order to find all the results by nonclassical Lie approach, two additional condition equations should be satisfied at the same time together with two original equations.展开更多
A new type of coupled Korteweg de-Vries equation is found to be Painlevé-integrable. The new model is a special case which can be used to describe two-layer fluids with different dispersion relations.
A special coupled KdV equation is proved to be the Painleve property by the Kruskal's simplification of WTC method. In order to search new exact solutions of the coupled KdV equation, Hirota's bilinear direct method...A special coupled KdV equation is proved to be the Painleve property by the Kruskal's simplification of WTC method. In order to search new exact solutions of the coupled KdV equation, Hirota's bilinear direct method and the conjugate complex number method of exponential functions are applied to this system. As a result, new analytical eomplexiton and soliton solutions are obtained synchronously in a physical field. Then their structures, time evolution and interaction properties are further discussed graphically.展开更多
This paper applies the variational iteration method to obtain approximate analytic solutions of a generalized Hirota-Satsuma coupled Korteweg-de Vries (KdV) equation and a coupled modified Korteweg-de Vries (mKdV)...This paper applies the variational iteration method to obtain approximate analytic solutions of a generalized Hirota-Satsuma coupled Korteweg-de Vries (KdV) equation and a coupled modified Korteweg-de Vries (mKdV) equation. This method provides a sequence Of functions which converges to the exact solution of the problem and is based on the use of Lagrange multiplier for identification of optimal values of parameters in a functional. Some examples are given to demonstrate the reliability and convenience of the method and comparisons are made with the exact solutions.展开更多
A coupled KdV equation is studied in this manuscript. The exact solutions, such as the periodic wave solutions and solitary wave solutions by means of the deformation and mapping approach from the solutions of the non...A coupled KdV equation is studied in this manuscript. The exact solutions, such as the periodic wave solutions and solitary wave solutions by means of the deformation and mapping approach from the solutions of the nonlinear φ4 model are given. Using the symmetry theory, the Lie point symmetries and symmetry reductions of the coupled KdV equation are presented. The results show that the coupled KdV equation possesses infinitely many symmetries and may be considered as an integrable system. Also, the Palnleve test shows the coupled KdV equation possesses Palnleve property. The Backlund transformations of the coupled KdV equation related to Palnleve property and residual symmetry are shown.展开更多
In this paper, we establish an estimate for the solutions of small-divisor equation of higher order with large variable coefficient. Then by formulating an infinite-dimensional KAM theorem which allows for multiple no...In this paper, we establish an estimate for the solutions of small-divisor equation of higher order with large variable coefficient. Then by formulating an infinite-dimensional KAM theorem which allows for multiple normal frequencies and unbounded perturbations, we prove that there are many periodic solutions for the coupled KdV equation subject to small Hamiltonian perturbations.展开更多
文摘By means of sn-function expansion method and cn-function expansion method, several kinds of explicit solutions to the coupled KdV equations with variable coefficients are obtained, which include three sets of periodic wave-like solutions. These solutions degenerate to solitary wave-like solutions at a certain limit. Some new solutions are presented.
基金Project supported by the Natural Science Foundation of Inner Mongolia of China (Grant No. 20080404MS0104)the Young Scientists Fund of Inner Mongolia University of China (Grant No. ND0811)
文摘In this paper, the genera]ised two-dimensiona] differentia] transform method (DTM) of solving the time-fractiona] coupled KdV equations is proposed. The fractional derivative is described in the Caputo sense. The presented method is a numerical method based on the generalised Taylor series expansion which constructs an analytical solution in the form of a polynomial. An illustrative example shows that the genera]ised two-dimensional DTM is effective for the coupled equations.
基金the Funds for Basic Research Project under Grant Nos.06XJC033 and 2008Bl10003
文摘Based on the second integrable ease of known two-dimensional Hamiltonian system with a quartie potentiM, we propose a 4 × 4 matrix speetrM problem and derive a hierarchy of coupled KdV equations and their Hamiltonian structures. It is shown that solutions of the coupled KdV equations in the hierarchy are reduced to solving two compatible systems of ordinary differentiM equations. As an application, quite a few explicit solutions of the coupled KdV equations are obtained via using separability for the second integrable ease of the two-dimensional Hamiltonian system.
文摘Variable coefficients and Wick-type stochastic fractional coupled KdV equations are investigated. By using the mod- ified fractional sub-equation method, Hermite transform, and white noise theory the exact travelling wave solutions and white noise functional solutions are obtained, including the generalized exponential, hyperbolic, and trigonometric types.
基金Supported by the Natural Natural Science Foundation of China(Grant No:11361040)Science Research Foundation of Institution of Higher Education of Inner Mongolia Autonomous Region,China(Grant No:NJZY16180)Natural Science Foundation of Inner Mongolia Autonomous Region,China(Grant No:2015MS0128)。
文摘In this paper,new infinite sequence complex solutions of the coupled Kd V equations are constructed with the help of function transformation and the second kind of elliptic equation.First of all,according to the function transformation,the coupled Kd V equations are changed into the second kind of elliptic equation.Secondly,the new solutions and Bäcklund transformation of the second kind of elliptic equation are applied to search for new infinite sequence complex solutions of the coupled Kd V equations.These solutions include new infinite sequence complex solutions composed by Jacobi elliptic function,hyperbolic function and triangular function.
基金The project supported by the National Fundamental Research Program of China(973 Program)under Grant No.2007CB814800National Natural Science Foundation of China under Grant No.10601028
文摘The coupled Korteweg-de Vries (CKdV) equation with self-consistent sources (CKdVESCS) and its Lax representation are derived. We present a generalized binary Darboux transformation (GBDT) with an arbitrary time- dependent function for the CKdVESCS as well as the formula for the N-times repeated GBDT. This GBDT provides non-auto-Biicklund transformation between two CKdVESCSs with different degrees of sources and enables us to construct more generM solutions with N arbitrary t-dependent functions. We obtain positon, negaton, complexiton, and negaton- positon solutions of the CKdVESCS.
基金National Natural Science Foundations of China under Grant Nos.10475055 and 40305009
文摘Using Ablowitz-Ramani Segur algorithm, the coupled KdV systems are reclassified under the Painlevé integrable sense while the similarity reductions of the model are obtained by using the Clarkson and Kruskal's direct method. Some new types of Painlevé integrable models including a model with different dispersion relations for two layer fluids are found.
基金Project supported by the National Science Foundation (No.DMS-0604947)
文摘Amplitude equations governing the nonlinear resonant interaction of equatorial baroclinic and barotropic Rossby waves were derived by Majda and Biello and used as a model for long range interactions (teleconnections) between the tropical and midlatitude troposphere. An overview of that derivation is nonlinear wave theory, but not in atmospheric presented and geared to readers versed in sciences. In the course of the derivation, two other sets of asymptotic equations are presented: the long equatorial wave equations and the weakly nonlinear, long equatorial wave equations. A linear transformation recasts the amplitude equations as nonlinear and linearly coupled KdV equations governing the amplitude of two types of modes, each of which consists of a coupled tropical/midlatitude flow. In the limit of Rossby waves with equal dispersion, the transformed amplitude equations become two KdV equations coupled only through nonlinear fluxes. Four numerical integrations are presented which show (i) the interaction of two solitons, one from either mode, (ii) and (iii) the interaction of a soliton in the presence of different mean wind shears, and (iv) the interaction of two solitons mediated by the presence of a mean wind shear.
基金Supported by National Natural Science Foundation of China under Grant No.11104248Zhejiang Provincial Natural Science Foundation of China under Grant No.LQ12A01008Project of Education of Zhejiang Province under Grant No.Y201327716
文摘Based on the invariant expansion method, some reasonable approximate solutions of coupled Korteweg-de Vries (KdV) equations with different linear dispersion relations have been obtained. These solutions contain not only bell type soliton solutions but also periodic wave solutions that expressed by Jacob/elliptic functions. The results also show that if the arbitrary constants are selected suitably, the approximate solutions may become the exact ones.
基金Supported by the National Natural Science Foundation of China under Grant No.11001250
文摘The Hirota-Satsuma coupled KdV equations associated 2 x 2 matrix spectral problem is discussed by the dressing method, which is based on the factorization of integral operator on a line into a product of two Volterra integral operators. A new solution is obtained by choosing special kernel of integral operator.
基金The project supported by National Natural Science Foundation of China under Grant No. 10071033 and the Natural Science Foundation of Jiangsu Province under Grant No. BK2002003. Acknowledgments 0ne of the authors (S.P. Qian) is indebted to Prof. S.Y. Lou for his helpful discussions.
文摘The simple Lie point symmetry reduction procedure is used to obtain infinitely many symmetries to a new integrable system of coupled KdV equations. Using some symmetry subalgebra of the equations, five types of the significant similarity reductions are obtained by virtue of the Lie group approach, and obtain abundant solutions of the coupled KdV equations, such as the solitary wave solution, exponential solution, rational solution, polynomial solution, etc.
基金*Supported by the National Natural Science Foundation of China under Grant No. 60772023, by the Open Fund of the State Key Laboratory of Software Development Environment under Grant No. SKLSDE-07-001, Beijing University of Aeronautics and Astronautics, by the National Basic Research Program of China (973 Program) under Grant No. 2005CB321901, and by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant Nos. 20060006024 and 200800130006, Chinese Ministry of Education.
文摘Kortweg-de Vries (KdV)-typed equations have been used to describe certain nonlinear phenomena in fluids and plasmas. Generalized complex coupled KdV (GCCKdV) equations are investigated in this paper. Through the dependent variable transformations and symbolic computation, GCCKdV equations are transformed into their bilinear forms, based on which the one- and two-soliton solutions are obtained. Through the interactions of two solitons, the regular elastic collision are shown. When the wave numbers are complex, three kinds of solitonie collisions are presented: (i) two solitons merge and separate from each other periodically; (ii) two solitons exhibit the attraction and repulsion nearly twice, and finally separate from each other after such type of interaction; (iii) two solitons are ftuctuant in the central region of the collision. Propagation features of solitons are investigated with the effects of the coefficients in the GCCKdV equations considered. Velocity of soliton increase with the a increasing. Amplitude of v increase with the a increasing and decrease with the β increasing.
基金Project supported by the Natural Science Foundation of Henan Province of China (Grant No 0111050200) and the Science Foundation of Henan University of Science and Technology (Grant Nos 2004ZY040 and 2004ZD002).
文摘An extended F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics is presented, which can be thought of as a concentration of extended Jacobi elliptic function expansion method proposed more recently. By using the homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by Jacobi elliptic functions for the coupled KdV equations are derived. In the limit cases, the solitary wave solutions and the other type of travelling wave solutions for the system are also obtained.
基金Project supported by the National Natural Science Foundation of China (Grant No 10071033), the Natural Science Foundation of Jiangsu Province, China (Grant No BK2002003), and the Technology Innovation Plan for Postgraduate of Jiangsu Province in 2006 (Grant No 72).Acknowledgment 0ne of the authors (Qian S P) is indebted to Professor Lou S Y for his helpful discussion.
文摘In this paper, Lie symmetry is investigated for a new integrable coupled Korteweg-de Vries (KdV) equation system. Using some symmetry subalgebra of the equation system, we obtain five types of the significant similarity reductions. Abundant solutions of the coupled KdV equation system, such as the solitary wave solution, exponential solution, rational solution and polynomial solution, etc. are obtained from the reduced equations. Especially, one type of group-invarlant solution of reduced equations can be acquired by means of the Painlevé I transcendent function.
基金The project supported by National Natural Science Foundation of China under Grant No. 10071033, the Natural Science Foundation of Jiangsu Province under Grant No. BK2002003, the Project of Technology Innovation Plan for Postgraduate of Jiangsu Province in Year 2006 under Grant No. 72, and the Natural Science Directed Foundation of the Jiangsu Higher Education Institutions under Grant No. 06KJDll0001
文摘Using the direct method for a coupled KdV system, six types of the similarity reductions are obtained. The group explanation of the results is also given. It is pointed out that, in order to find all the results by nonclassical Lie approach, two additional condition equations should be satisfied at the same time together with two original equations.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 90203001, 10475055, 90503006, and 10547124The authors are indebted to Dr. F. Huang and Prof. Y. Chen for their helpful discussions.
文摘A new type of coupled Korteweg de-Vries equation is found to be Painlevé-integrable. The new model is a special case which can be used to describe two-layer fluids with different dispersion relations.
文摘A special coupled KdV equation is proved to be the Painleve property by the Kruskal's simplification of WTC method. In order to search new exact solutions of the coupled KdV equation, Hirota's bilinear direct method and the conjugate complex number method of exponential functions are applied to this system. As a result, new analytical eomplexiton and soliton solutions are obtained synchronously in a physical field. Then their structures, time evolution and interaction properties are further discussed graphically.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10771019 and 10826107)
文摘This paper applies the variational iteration method to obtain approximate analytic solutions of a generalized Hirota-Satsuma coupled Korteweg-de Vries (KdV) equation and a coupled modified Korteweg-de Vries (mKdV) equation. This method provides a sequence Of functions which converges to the exact solution of the problem and is based on the use of Lagrange multiplier for identification of optimal values of parameters in a functional. Some examples are given to demonstrate the reliability and convenience of the method and comparisons are made with the exact solutions.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11675084 and 11435005Ningbo Natural Science Foundation under Grant No.2015A610159+1 种基金granted by the Opening Project of Zhejiang Provincial Top Key Discipline of Physics Sciences in Ningbo University under Grant No.xkzwl1502sponsored by K.C.Wong Magna Fund in Ningbo University
文摘A coupled KdV equation is studied in this manuscript. The exact solutions, such as the periodic wave solutions and solitary wave solutions by means of the deformation and mapping approach from the solutions of the nonlinear φ4 model are given. Using the symmetry theory, the Lie point symmetries and symmetry reductions of the coupled KdV equation are presented. The results show that the coupled KdV equation possesses infinitely many symmetries and may be considered as an integrable system. Also, the Palnleve test shows the coupled KdV equation possesses Palnleve property. The Backlund transformations of the coupled KdV equation related to Palnleve property and residual symmetry are shown.
基金Supported by National Natural Science Foundation of China (Grant No. 10725103), 973 Program (Grant No 2010CB327900) and Research Foundation for Doctor Programme (Grant No. 20080246) The authors are indebted to X. Yuan for his helpful discussion and encouragements, and to the two reviewers for invaluable suggestions.
文摘In this paper, we establish an estimate for the solutions of small-divisor equation of higher order with large variable coefficient. Then by formulating an infinite-dimensional KAM theorem which allows for multiple normal frequencies and unbounded perturbations, we prove that there are many periodic solutions for the coupled KdV equation subject to small Hamiltonian perturbations.