Within the context of the Belt and Road Initiative(BRI)and the China-Myanmar Economic Corridor(CMEC),the Dulong-Ir-rawaddy(Ayeyarwady)River,an international river among China,India and Myanmar,plays a significant role...Within the context of the Belt and Road Initiative(BRI)and the China-Myanmar Economic Corridor(CMEC),the Dulong-Ir-rawaddy(Ayeyarwady)River,an international river among China,India and Myanmar,plays a significant role as both a valuable hydro-power resource and an essential ecological passageway.However,the water resources and security exhibit a high degree of vulnerabil-ity to climate change impacts.This research evaluates climate impacts on the hydrology of the Dulong-Irrawaddy River Basin(DIRB)by using a physical-based hydrologic model.We crafted future climate scenarios using the three latest global climate models(GCMs)from Coupled Model Intercomparison Project 6(CMIP6)under two shared socioeconomic pathways(SSP2-4.5 and SSP5-8.5)for the near(2025-2049),mid(2050-2074),and far future(2075-2099).The regional model using MIKE SHE based on historical hydrologic processes was developed to further project future streamflow,demonstrating reliable performance in streamflow simulations with a val-idation Nash-Sutcliffe Efficiency(NSE)of 0.72.Results showed that climate change projections showed increases in the annual precip-itation and potential evapotranspiration(PET),with precipitation increasing by 11.3%and 26.1%,and PET increasing by 3.2%and 4.9%,respectively,by the end of the century under SSP2-4.5 and SSP5-8.5.These changes are projected to result in increased annual streamflow at all stations,notably at the basin’s outlet(Pyay station)compared to the baseline period(with an increase of 16.1%and 37.0%at the end of the 21st century under SSP2-4.5 and SSP5-8.5,respectively).Seasonal analysis for Pyay station forecasts an in-crease in dry-season streamflow by 31.3%-48.9%and 22.5%-76.3%under SSP2-4.5 and SSP5-8.5,respectively,and an increase in wet-season streamflow by 5.8%-12.6%and 2.8%-33.3%,respectively.Moreover,the magnitude and frequency of flood events are pre-dicted to escalate,potentially impacting hydropower production and food security significantly.This research outlines the hydrological response to future climate change during the 21st century and offers a scientific basis for the water resource management strategies by decision-makers.展开更多
The increases of atmospheric carbon dioxide and other greenhouse gases have caused fundamental changes to the physical and biogeochemical properties of the oceans,and it will continue to occur in the foreseeable futur...The increases of atmospheric carbon dioxide and other greenhouse gases have caused fundamental changes to the physical and biogeochemical properties of the oceans,and it will continue to occur in the foreseeable future.Based on the outputs of nine Earth System Models from the fifth phase of the Coupled Model Intercomparison Project(CMIP5),in this study,we provided a synoptic assessment of future changes in the sea surface temperature(SST),salinity,dissolved oxygen(DO),seawater pH,and marine net primary productivity(NPP)in the coastal China seas over the 21st century.The results show that the mid-high latitude areas of the coastal China seas(East China Seas(ECS),including the Bohai Sea,Yellow Sea,and East China Sea)will be simultaneously exposed to enhanced warming,deoxygenation,acidification,and decreasing NPP as a consequence of increasing greenhouse gas emissions.The magnitudes of the changes will increase as the greenhouse gas concentrations increase.Under the high emission scenario(Representative Concentration Pathway 8.5),the ECS will experience an SST increase of 3.24±1.23℃,a DO concentration decrease of 10.90±3.92μmol/L(decrease of 6.3%),a pH decline of 0.36±0.02,and a NPP reduction of-17.7±6.2 mg/(m2·d)(decrease of 12.9%)relative to the current levels(1980-2005)by the end of this century.The co-occurrence of these changes and their cascade effects are expected to induce considerable biological and ecological responses,thereby making the ECS among the most vulnerable ocean areas to future climate change.Despite high uncertainties,our results have important implications for regional marine assessments.展开更多
The Paris Agreement aims to limit global warming to well below 2.00℃and pursue efforts to limit the temperature increase to 1.50℃.However,the response of climate change to unbalanced global warming is affected by sp...The Paris Agreement aims to limit global warming to well below 2.00℃and pursue efforts to limit the temperature increase to 1.50℃.However,the response of climate change to unbalanced global warming is affected by spatial and temporal sensitivities.To better understand the regional warming response to global warming at 1.50℃and 2.00℃,we detected the 1.50℃and 2.00℃warming threshold-crossing time(WTT)above pre-industrial levels globally using the Coupled Model Intercomparison Project phase 6(CMIP6)models.Our findings indicate that the 1.50℃or 2.00℃WTT differs substantially worldwide.The warming rate of land would be approximately 1.35–1.46 times that of the ocean between 60°N–60°S in 2015–2100.Consequently,the land would experience a 1.50℃(2.00℃)warming at least 10–20 yr earlier than the time when the global mean near-surface air temperature reaches 1.50℃(2.00℃)WTT.Meanwhile,the Southern Ocean between 0°and 60°S considerably slows down the global 1.50℃and 2.00℃WTT.In 2040–2060,over 98.70%(77.50%),99.70%(89.30%),99.80%(93.40%),and 100.00%(98.00%)of the land will have warmed by over 1.50℃(2.00℃)under SSP(Shared Socioeconomic Pathway)1–2.6,SSP2-4.5,SSP3-7.0,and SSP5-8.5,respectively.We conclude that regional 1.50℃(2.00℃)WTT should be fully considered,especially in vulnerable high-latitude and high-altitude regions.展开更多
Seventeen coupled general circulation models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are employed to assess the relationships of interannual variations of sea surface temperature (SST) betwe...Seventeen coupled general circulation models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are employed to assess the relationships of interannual variations of sea surface temperature (SST) between the tropical Pacific (TP) and tropical Indian Ocean (TIO). The eastern/central equatorial Pacific features the strongest SST interannual variability in the models except for the model CSIRO-Mk3-6-0, and the simulated maximum and minimum are produced by models GFDL-ESM2M and GISS-E2-H respectively. However, It remains a challenge for these models to simulate the correct climate mean SST with the warm pool-cold tongue structure in the equatorial Pacific. Almost all models reproduce E1 Nifio-Southem Oscillation (ENSO), Indian Ocean Dipole mode (IOD) and Indian Ocean Basin-wide mode (lOB) together with their seasonal phase lock features being simulated; but the relationship between the ENSO and IOD is different for different models. Consistent with the observation, an Indian Ocean basin-wide warming (cooling) takes place over the tropical Indian Ocean in the spring following an E1 Nifio (La Nifia) in almost all the models. In some models (e.g., GFDL-ESM2G and MIROC5), positive ENSO and IOB events are stronger than the negative events as shown in the observation. However, this asymmetry is reversed in some other models (e.g., HadGEM2-CC and HadGEM2-ES).展开更多
Eleven climate system models that participate in the Coupled Model Intercomparison Project phase 5(CMIP5)were evaluated based on an assessment of their simulated meridional transports in comparison with the Sverdrup t...Eleven climate system models that participate in the Coupled Model Intercomparison Project phase 5(CMIP5)were evaluated based on an assessment of their simulated meridional transports in comparison with the Sverdrup transports.The analyses show that the simulated North Pacifi c Ocean circulation is essentially in Sverdrup balance in most of the 11 models while the Argo geostrophic meridional transports indicate signifi cant non-Sverdrup gyre circulation in the tropical North Pacifi c Ocean.The climate models overestimated the observed tropical and subtropical volume transports signifi cantly.The non-Sverdrup gyre circulation leads to non-Sverdrup heat and salt transports,the absence of which in the CMIP5 simulations suggests defi ciencies of the CMIP5 model dynamics in simulating the realistic meridional volume,heat,and salt transports of the ocean.展开更多
Seventeen models participating in the Coupled Model Intercomparison Project phase 5(CMIP5) activity are compared on their historical simulation of the South China Sea(SCS) ocean heat content(OHC) in the upper 30...Seventeen models participating in the Coupled Model Intercomparison Project phase 5(CMIP5) activity are compared on their historical simulation of the South China Sea(SCS) ocean heat content(OHC) in the upper 300 m. Ishii's temperature data, based on the World Ocean Database 2005(WOD05) and World Ocean Atlas 2005(WOA05), is used to assess the model performance by comparing the spatial patterns of seasonal OHC anomaly(OHCa) climatology, OHC climatology, monthly OHCa climatology, and interannual variability of OHCa. The spatial patterns in Ishii's data set show that the seasonal SCS OHCa climatology, both in winter and summer, is strongly affected by the wind stress and the current circulations in the SCS and its neighboring areas. However, the CMIP5 models present rather different spatial patterns and only a few models properly capture the dominant features in Ishii's pattern. Among them, GFDL-ESM2 G is of the best performance. The SCS OHC climatology in the upper 300 m varies greatly in different models. Most of them are much greater than those calculated from Ishii's data. However, the monthly OHCa climatology in each of the 17 CMIP5 models yields similar variation and magnitude as that in Ishii's. As for the interannual variability, the standard deviations of the OHCa time series in most of the models are somewhat larger than those in Ishii's. The correlation between the interannual time series of Ishii's OHCa and that from each of the 17 models is not satisfactory. Among them, BCC-CSM1.1 has the highest correlation to Ishii's, with a coefficient of about 0.6.展开更多
Based on observations and Coupled Model lntercomparison Project Phase 5 (CMIP5) results, multidecadal variations and trends in annual mean surface air temperature anomalies (SATa) at global, hemispheric, and hemis...Based on observations and Coupled Model lntercomparison Project Phase 5 (CMIP5) results, multidecadal variations and trends in annual mean surface air temperature anomalies (SATa) at global, hemispheric, and hemispheric land and ocean scales in the past and under the future scenarios of two representative concentration pathways (RCPs) are analyzed. Fifteen models are selected based on their performances in capturing the temporal variability, long-term trend, multidecadal variations, and trends in global annual mean SATa. Observational data analysis shows that the multidecadal variations in annual mean SATa of the land and ocean in the northern hemisphere (NH) and of the ocean in the southern hemisphere (SH) are similar to those of the global mean, showing an increase during the 1900-1944 and 1971-2000 periods, and flattening or even cooling during the 1945-1970 and 2001-2013 periods. These observed characteristics are basically reproduced by the models. However, SATa over SH land show an increase during the 1945-1970 period, which differs from the other hemispheric scales, and this feature is not captured well by the models. For the recent hiatus period (2001-2013), the projected trends of BCC-CSM1-1-m, CMCC-CM, GFDL-ESM2M, and NorESM1-ME at the global and hemispheric scales are closest to the observations based on RCP4.5 and RCP8.5 scenarios, suggesting that these four models have better projection capability in SATa. Because these four models are better at simulating and projecting the multidecadal trends of SATa, they are selected to analyze future SATa variations at the global and hemispheric scales during the 2006-2099 period. The selected multi-model ensemble (MME) projected trends in annual mean SATa for the globe, NH, and SH under RCP4.5 (RCP8.5) are 0.17 (0.29) ℃, 0.22 (0.36) ℃, and 0.11 (0.23) ℃-decade-1 in the 21st century, respectively. These values are significantly lower than the projections of CMIP5 MME without model selection.展开更多
The subtropical North and South Pacific Meridional Modes(NPMM and SPMM)are well known precursors of El Niño-Southern Oscillation(ENSO).However,relationship between them is not constant.In the early 1980,the relat...The subtropical North and South Pacific Meridional Modes(NPMM and SPMM)are well known precursors of El Niño-Southern Oscillation(ENSO).However,relationship between them is not constant.In the early 1980,the relationship experienced an interdecadal transition.Changes in this connection can be attributed mainly to the phase change of the Pacific decadal oscillation(PDO).During the positive phase of PDO,a shallower thermocline in the central Pacific is responsible for the stronger trade wind charging(TWC)mechanism,which leads to a stronger equatorial subsurface temperature evolution.This dynamic process strengthens the connection between NPMM and ENSO.Associated with the negative phase of PDO,a shallower thermocline over southeastern Pacific allows an enhanced wind-evaporation-SST(WES)feedback,strengthening the connection between SPMM and ENSO.Using 35 Coupled Model Intercomparison Project Phase 6(CMIP6)models,we examined the NPMM/SPMM performance and its connection with ENSO in the historical runs.The great majority of CMIP6 models can reproduce the pattern of NPMM and SPMM well,but they reveal discrepant ENSO and NPMM/SPMM relationship.The intermodal uncertainty for the connection of NPMM-ENSO is due to different TWC mechanism.A stronger TWC mechanism will enhance NPMM forcing.For SPMM,few models can simulate a good relationship with ENSO.The intermodel spread in the relationship of SPMM and ENSO owing to SST bias in the southeastern Pacific,as WES feedback is stronger when the southeastern Pacific is warmer.展开更多
2000年后全球气温的增温率显著下降,全球进入变暖减缓期。本文基于CRU(Climatic Research Unit)观测资料,分析讨论了2000年后全球及欧亚中高纬度地区全球变暖的减缓特征,评估了CMIP5(Coupled Model Intercomparison Project Phase 5...2000年后全球气温的增温率显著下降,全球进入变暖减缓期。本文基于CRU(Climatic Research Unit)观测资料,分析讨论了2000年后全球及欧亚中高纬度地区全球变暖的减缓特征,评估了CMIP5(Coupled Model Intercomparison Project Phase 5)试验多模式对全球变暖减缓的模拟及未来气温变化预估。结果表明,2000年后全球陆地平均地面气温的增温率大幅下降至0.14°C(10 a)-1,仅为1976~1999年加速期增温率的一半。全球陆地13个区域中有9个地区的增温率小于2000年前,4个地区甚至出现了降温。其中以欧亚中高纬地区最为特殊。加速期(1976~1999年)增温率达到0.50°C(10 a)-1,为全球陆地最大,2000年后陡降至-0.17°C(10 a)-1,为全球最强降温区,为全球变暖的减缓贡献了49.13%。并且具有显著的季节依赖,减缓期冬季增温率下降了-2.68°C(10a)-1,而秋季升高了0.86°C(10 a)-1,呈现反位相变化特征。CMIP5多模式计划中仅BCC-CSM1.1在RCP2.6情景下和MRI-ESM1模式在RCP8.5下的模拟较好地预估了全球及欧亚中高纬地区在2000年后增温率的下降以及欧亚中高纬秋、冬温度的反位相变化特征。BCC-CSM1.1在RCP2.6情景下预估欧亚中高纬地区2012年后温度距平保持在1.2°C左右,2020年后跃至2°C附近振荡。而MRI-ESM1在RCP8.5情景下预估的欧亚中高纬度温度在2030年前一直维持几乎为零的增温率,之后迅速升高。展开更多
利用第五次耦合模式比较计划(Phase 5 of Coupled Model Intercomparison Project,CMIP5)提供的30个全球气候模式模拟的1961~2005年的夏季逐月环流场资料及同期NCEP再分析资料,引入泰勒图及各种评估指标,探讨全球气候模式对东亚夏季...利用第五次耦合模式比较计划(Phase 5 of Coupled Model Intercomparison Project,CMIP5)提供的30个全球气候模式模拟的1961~2005年的夏季逐月环流场资料及同期NCEP再分析资料,引入泰勒图及各种评估指标,探讨全球气候模式对东亚夏季平均大气环流场的模拟能力,寻求具有较好东亚夏季环流场模拟能力的气候模式。结果表明:1)全球气候模式能够模拟出东亚夏季平均大气环流的基本特征,CMIP5模式的总体模拟能力较第三次耦合模式比较计划(CMIP3)有较大程度的提高,如CMIP5模式对东亚大部分地区夏季海平面气压(Sea Level Pressure,SLP)场的模拟偏差在6 h Pa以内。2)模式对不同层次环流场的模拟能力存在差异,500 h Pa高度场的模拟能力最强,其次为100 h Pa高度场、850 h Pa风场,SLP场最弱;对东亚夏季主要环流系统的模拟对比发现,模式对印度热低压及东伸槽强度指数的模拟能力最好。3)综合CMIP5模式对东亚夏季各层次平均环流场以及主要环流系统的模拟能力,发现模拟较好的5个模式为CESM1-CAM5、MPI-ESM-MR、MPI-ESM-LR、MPI-ESM-P和Can ESM2。4)相对于单一模式,多模式集合平均(MME)模拟能力较强,但较优选的前5个模式集合平均的模拟能力弱。展开更多
The development of coupled earth/climate system models in China over the past 20 years is reviewed, including a comparison with other international models that participated in the Coupled Model Intercom- parison Proje...The development of coupled earth/climate system models in China over the past 20 years is reviewed, including a comparison with other international models that participated in the Coupled Model Intercom- parison Project (CMIP) from phase 1 (CMIP1) to phase 4 (CMIP4). The Chinese contribution to CMIP is summarized, and the major achievements from CMIP1 to CMIP3 are listed as a reference for assessing the strengths and weaknesses of Chinese models. After a description of CMIP5 experiments, the five Chinese models that participated in CMIP5 are then introduced. Furthermore, following a review of the current status of international model development, both the challenges and opportunities for the Chinese climate modeling community are discussed. The development of high-resolution climate models, earth system mod- els, and improvements in atmospheric and oceanic general circulation models, which are core components of earth/climate system models, are highlighted. To guarantee the sustainable development of climate system models in China, the need for national-level coordination is discussed, along with a list of the main compo- nents and supporting elements identified by the US National Strategy for Advancing Climate Modeling.展开更多
基金Under the auspices of the Yunnan Scientist Workstation on International River Research of Daming He(No.KXJGZS-2019-005)National Natural Science Foundation of China(No.42201040)+1 种基金National Key Research and Development Project of China(No.2016YFA0601601)China Postdoctoral Science Foundation(No.2023M733006)。
文摘Within the context of the Belt and Road Initiative(BRI)and the China-Myanmar Economic Corridor(CMEC),the Dulong-Ir-rawaddy(Ayeyarwady)River,an international river among China,India and Myanmar,plays a significant role as both a valuable hydro-power resource and an essential ecological passageway.However,the water resources and security exhibit a high degree of vulnerabil-ity to climate change impacts.This research evaluates climate impacts on the hydrology of the Dulong-Irrawaddy River Basin(DIRB)by using a physical-based hydrologic model.We crafted future climate scenarios using the three latest global climate models(GCMs)from Coupled Model Intercomparison Project 6(CMIP6)under two shared socioeconomic pathways(SSP2-4.5 and SSP5-8.5)for the near(2025-2049),mid(2050-2074),and far future(2075-2099).The regional model using MIKE SHE based on historical hydrologic processes was developed to further project future streamflow,demonstrating reliable performance in streamflow simulations with a val-idation Nash-Sutcliffe Efficiency(NSE)of 0.72.Results showed that climate change projections showed increases in the annual precip-itation and potential evapotranspiration(PET),with precipitation increasing by 11.3%and 26.1%,and PET increasing by 3.2%and 4.9%,respectively,by the end of the century under SSP2-4.5 and SSP5-8.5.These changes are projected to result in increased annual streamflow at all stations,notably at the basin’s outlet(Pyay station)compared to the baseline period(with an increase of 16.1%and 37.0%at the end of the 21st century under SSP2-4.5 and SSP5-8.5,respectively).Seasonal analysis for Pyay station forecasts an in-crease in dry-season streamflow by 31.3%-48.9%and 22.5%-76.3%under SSP2-4.5 and SSP5-8.5,respectively,and an increase in wet-season streamflow by 5.8%-12.6%and 2.8%-33.3%,respectively.Moreover,the magnitude and frequency of flood events are pre-dicted to escalate,potentially impacting hydropower production and food security significantly.This research outlines the hydrological response to future climate change during the 21st century and offers a scientific basis for the water resource management strategies by decision-makers.
基金Supported by the National Key R&D Program of China(Nos.2017YFA0604901,2017YFA0604902)the Scientific Research Foundation of the Third Institute of Oceanography,Ministry of Natural Resources,China(No.TIO2017030)the Major Project of National Social Science Foundation(No.17ZDA172)。
文摘The increases of atmospheric carbon dioxide and other greenhouse gases have caused fundamental changes to the physical and biogeochemical properties of the oceans,and it will continue to occur in the foreseeable future.Based on the outputs of nine Earth System Models from the fifth phase of the Coupled Model Intercomparison Project(CMIP5),in this study,we provided a synoptic assessment of future changes in the sea surface temperature(SST),salinity,dissolved oxygen(DO),seawater pH,and marine net primary productivity(NPP)in the coastal China seas over the 21st century.The results show that the mid-high latitude areas of the coastal China seas(East China Seas(ECS),including the Bohai Sea,Yellow Sea,and East China Sea)will be simultaneously exposed to enhanced warming,deoxygenation,acidification,and decreasing NPP as a consequence of increasing greenhouse gas emissions.The magnitudes of the changes will increase as the greenhouse gas concentrations increase.Under the high emission scenario(Representative Concentration Pathway 8.5),the ECS will experience an SST increase of 3.24±1.23℃,a DO concentration decrease of 10.90±3.92μmol/L(decrease of 6.3%),a pH decline of 0.36±0.02,and a NPP reduction of-17.7±6.2 mg/(m2·d)(decrease of 12.9%)relative to the current levels(1980-2005)by the end of this century.The co-occurrence of these changes and their cascade effects are expected to induce considerable biological and ecological responses,thereby making the ECS among the most vulnerable ocean areas to future climate change.Despite high uncertainties,our results have important implications for regional marine assessments.
基金Under the auspices of the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(No.2019QZKK020104)the National Natural Science Foundation of China(No.41571062,42101122)+2 种基金the Fundamental Research Funds for the Central Universities(No.2020TS100)the Natural Science Foundation of Shaanxi Province,China(No.2023-JC-YB-259)the China Postdoctoral Science Foundation(No.2017M610622)。
文摘The Paris Agreement aims to limit global warming to well below 2.00℃and pursue efforts to limit the temperature increase to 1.50℃.However,the response of climate change to unbalanced global warming is affected by spatial and temporal sensitivities.To better understand the regional warming response to global warming at 1.50℃and 2.00℃,we detected the 1.50℃and 2.00℃warming threshold-crossing time(WTT)above pre-industrial levels globally using the Coupled Model Intercomparison Project phase 6(CMIP6)models.Our findings indicate that the 1.50℃or 2.00℃WTT differs substantially worldwide.The warming rate of land would be approximately 1.35–1.46 times that of the ocean between 60°N–60°S in 2015–2100.Consequently,the land would experience a 1.50℃(2.00℃)warming at least 10–20 yr earlier than the time when the global mean near-surface air temperature reaches 1.50℃(2.00℃)WTT.Meanwhile,the Southern Ocean between 0°and 60°S considerably slows down the global 1.50℃and 2.00℃WTT.In 2040–2060,over 98.70%(77.50%),99.70%(89.30%),99.80%(93.40%),and 100.00%(98.00%)of the land will have warmed by over 1.50℃(2.00℃)under SSP(Shared Socioeconomic Pathway)1–2.6,SSP2-4.5,SSP3-7.0,and SSP5-8.5,respectively.We conclude that regional 1.50℃(2.00℃)WTT should be fully considered,especially in vulnerable high-latitude and high-altitude regions.
基金supported by the National Basic Research Program of China 2012CB955602 and 2012CB955603the Natural Science Foundation of China(41176006,40921004 and 41106010)
文摘Seventeen coupled general circulation models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are employed to assess the relationships of interannual variations of sea surface temperature (SST) between the tropical Pacific (TP) and tropical Indian Ocean (TIO). The eastern/central equatorial Pacific features the strongest SST interannual variability in the models except for the model CSIRO-Mk3-6-0, and the simulated maximum and minimum are produced by models GFDL-ESM2M and GISS-E2-H respectively. However, It remains a challenge for these models to simulate the correct climate mean SST with the warm pool-cold tongue structure in the equatorial Pacific. Almost all models reproduce E1 Nifio-Southem Oscillation (ENSO), Indian Ocean Dipole mode (IOD) and Indian Ocean Basin-wide mode (lOB) together with their seasonal phase lock features being simulated; but the relationship between the ENSO and IOD is different for different models. Consistent with the observation, an Indian Ocean basin-wide warming (cooling) takes place over the tropical Indian Ocean in the spring following an E1 Nifio (La Nifia) in almost all the models. In some models (e.g., GFDL-ESM2G and MIROC5), positive ENSO and IOB events are stronger than the negative events as shown in the observation. However, this asymmetry is reversed in some other models (e.g., HadGEM2-CC and HadGEM2-ES).
基金Supported by the National Natural Foundation of China(Nos.41421005,41720104008,91858204)the National Basic Research Program of China(973 Program)(No.2012CB956001)+2 种基金the Qingdao National Laboratory for Marine Science and Technology(No.2016ASKJ04)the Chinese Academy of Science(No.XDA11010205)the Shandong Provincial Projects(Nos.2014GJJS0101,U1406401)。
文摘Eleven climate system models that participate in the Coupled Model Intercomparison Project phase 5(CMIP5)were evaluated based on an assessment of their simulated meridional transports in comparison with the Sverdrup transports.The analyses show that the simulated North Pacifi c Ocean circulation is essentially in Sverdrup balance in most of the 11 models while the Argo geostrophic meridional transports indicate signifi cant non-Sverdrup gyre circulation in the tropical North Pacifi c Ocean.The climate models overestimated the observed tropical and subtropical volume transports signifi cantly.The non-Sverdrup gyre circulation leads to non-Sverdrup heat and salt transports,the absence of which in the CMIP5 simulations suggests defi ciencies of the CMIP5 model dynamics in simulating the realistic meridional volume,heat,and salt transports of the ocean.
基金The National Basic Research Program(973 Program)of China under contract No.2011CB403502the Major National Scientific Research Projects of China under contract No.2012CB957803+2 种基金the National Natural Science Foundation of China under contract Nos 41006018 and 41476024the Foundation for Outstanding Young and Middle-aged Scientists in Shandong Province of China under contract No.BS2011HZ019the UNESCO-IOC/WESTPAC Project"Response of marine hazards to climate change in the Western Pacific"
文摘Seventeen models participating in the Coupled Model Intercomparison Project phase 5(CMIP5) activity are compared on their historical simulation of the South China Sea(SCS) ocean heat content(OHC) in the upper 300 m. Ishii's temperature data, based on the World Ocean Database 2005(WOD05) and World Ocean Atlas 2005(WOA05), is used to assess the model performance by comparing the spatial patterns of seasonal OHC anomaly(OHCa) climatology, OHC climatology, monthly OHCa climatology, and interannual variability of OHCa. The spatial patterns in Ishii's data set show that the seasonal SCS OHCa climatology, both in winter and summer, is strongly affected by the wind stress and the current circulations in the SCS and its neighboring areas. However, the CMIP5 models present rather different spatial patterns and only a few models properly capture the dominant features in Ishii's pattern. Among them, GFDL-ESM2 G is of the best performance. The SCS OHC climatology in the upper 300 m varies greatly in different models. Most of them are much greater than those calculated from Ishii's data. However, the monthly OHCa climatology in each of the 17 CMIP5 models yields similar variation and magnitude as that in Ishii's. As for the interannual variability, the standard deviations of the OHCa time series in most of the models are somewhat larger than those in Ishii's. The correlation between the interannual time series of Ishii's OHCa and that from each of the 17 models is not satisfactory. Among them, BCC-CSM1.1 has the highest correlation to Ishii's, with a coefficient of about 0.6.
基金This study was supported by National Key Research and Development Program of China (2016YFA0601801), the State Key Program of National Natural Science Foundation of China (41530424), National Program on Global Change and Air-Sea Interactions, State Oceanic Administration (SOA) (GASI-IPOVAI-03), and the National Natural Science Foundation of China (41305121). We sincerely thank two anonymous reviewers whose comments improved the paper.
文摘Based on observations and Coupled Model lntercomparison Project Phase 5 (CMIP5) results, multidecadal variations and trends in annual mean surface air temperature anomalies (SATa) at global, hemispheric, and hemispheric land and ocean scales in the past and under the future scenarios of two representative concentration pathways (RCPs) are analyzed. Fifteen models are selected based on their performances in capturing the temporal variability, long-term trend, multidecadal variations, and trends in global annual mean SATa. Observational data analysis shows that the multidecadal variations in annual mean SATa of the land and ocean in the northern hemisphere (NH) and of the ocean in the southern hemisphere (SH) are similar to those of the global mean, showing an increase during the 1900-1944 and 1971-2000 periods, and flattening or even cooling during the 1945-1970 and 2001-2013 periods. These observed characteristics are basically reproduced by the models. However, SATa over SH land show an increase during the 1945-1970 period, which differs from the other hemispheric scales, and this feature is not captured well by the models. For the recent hiatus period (2001-2013), the projected trends of BCC-CSM1-1-m, CMCC-CM, GFDL-ESM2M, and NorESM1-ME at the global and hemispheric scales are closest to the observations based on RCP4.5 and RCP8.5 scenarios, suggesting that these four models have better projection capability in SATa. Because these four models are better at simulating and projecting the multidecadal trends of SATa, they are selected to analyze future SATa variations at the global and hemispheric scales during the 2006-2099 period. The selected multi-model ensemble (MME) projected trends in annual mean SATa for the globe, NH, and SH under RCP4.5 (RCP8.5) are 0.17 (0.29) ℃, 0.22 (0.36) ℃, and 0.11 (0.23) ℃-decade-1 in the 21st century, respectively. These values are significantly lower than the projections of CMIP5 MME without model selection.
基金Supported by the National Natural Science Foundation of China(NSFC)(No.41976027)。
文摘The subtropical North and South Pacific Meridional Modes(NPMM and SPMM)are well known precursors of El Niño-Southern Oscillation(ENSO).However,relationship between them is not constant.In the early 1980,the relationship experienced an interdecadal transition.Changes in this connection can be attributed mainly to the phase change of the Pacific decadal oscillation(PDO).During the positive phase of PDO,a shallower thermocline in the central Pacific is responsible for the stronger trade wind charging(TWC)mechanism,which leads to a stronger equatorial subsurface temperature evolution.This dynamic process strengthens the connection between NPMM and ENSO.Associated with the negative phase of PDO,a shallower thermocline over southeastern Pacific allows an enhanced wind-evaporation-SST(WES)feedback,strengthening the connection between SPMM and ENSO.Using 35 Coupled Model Intercomparison Project Phase 6(CMIP6)models,we examined the NPMM/SPMM performance and its connection with ENSO in the historical runs.The great majority of CMIP6 models can reproduce the pattern of NPMM and SPMM well,but they reveal discrepant ENSO and NPMM/SPMM relationship.The intermodal uncertainty for the connection of NPMM-ENSO is due to different TWC mechanism.A stronger TWC mechanism will enhance NPMM forcing.For SPMM,few models can simulate a good relationship with ENSO.The intermodel spread in the relationship of SPMM and ENSO owing to SST bias in the southeastern Pacific,as WES feedback is stronger when the southeastern Pacific is warmer.
文摘利用第五次耦合模式比较计划(Phase 5 of Coupled Model Intercomparison Project,CMIP5)提供的30个全球气候模式模拟的1961~2005年的夏季逐月环流场资料及同期NCEP再分析资料,引入泰勒图及各种评估指标,探讨全球气候模式对东亚夏季平均大气环流场的模拟能力,寻求具有较好东亚夏季环流场模拟能力的气候模式。结果表明:1)全球气候模式能够模拟出东亚夏季平均大气环流的基本特征,CMIP5模式的总体模拟能力较第三次耦合模式比较计划(CMIP3)有较大程度的提高,如CMIP5模式对东亚大部分地区夏季海平面气压(Sea Level Pressure,SLP)场的模拟偏差在6 h Pa以内。2)模式对不同层次环流场的模拟能力存在差异,500 h Pa高度场的模拟能力最强,其次为100 h Pa高度场、850 h Pa风场,SLP场最弱;对东亚夏季主要环流系统的模拟对比发现,模式对印度热低压及东伸槽强度指数的模拟能力最好。3)综合CMIP5模式对东亚夏季各层次平均环流场以及主要环流系统的模拟能力,发现模拟较好的5个模式为CESM1-CAM5、MPI-ESM-MR、MPI-ESM-LR、MPI-ESM-P和Can ESM2。4)相对于单一模式,多模式集合平均(MME)模拟能力较强,但较优选的前5个模式集合平均的模拟能力弱。
基金Supported by the National Natural Science Foundation of China(41125017 and 41330423)LASG/IAP Funding for the Development of Climate System Model
文摘The development of coupled earth/climate system models in China over the past 20 years is reviewed, including a comparison with other international models that participated in the Coupled Model Intercom- parison Project (CMIP) from phase 1 (CMIP1) to phase 4 (CMIP4). The Chinese contribution to CMIP is summarized, and the major achievements from CMIP1 to CMIP3 are listed as a reference for assessing the strengths and weaknesses of Chinese models. After a description of CMIP5 experiments, the five Chinese models that participated in CMIP5 are then introduced. Furthermore, following a review of the current status of international model development, both the challenges and opportunities for the Chinese climate modeling community are discussed. The development of high-resolution climate models, earth system mod- els, and improvements in atmospheric and oceanic general circulation models, which are core components of earth/climate system models, are highlighted. To guarantee the sustainable development of climate system models in China, the need for national-level coordination is discussed, along with a list of the main compo- nents and supporting elements identified by the US National Strategy for Advancing Climate Modeling.