The dissipative equilibrium dynamics studies the law of fluid motion under constraints in the contact interface of the coupling system. It needs to examine how con- straints act upon the fluid movement, while the flui...The dissipative equilibrium dynamics studies the law of fluid motion under constraints in the contact interface of the coupling system. It needs to examine how con- straints act upon the fluid movement, while the fluid movement reacts to the constraint field. It also needs to examine the coupling fluid field and media within the contact in- terface, and to use the multi-scale analysis to solve the regular and singular perturbation problems in micro-phenomena of laboratories and macro-phenomena of nature. This pa- per describes the field affected by the gravity constraints. Applying the multi-scale anal- ysis to the complex Fourier harmonic analysis, scale changes, and the introduction of new parameters, the complex three-dimensional coupling dynamic equations are transformed into a boundary layer problem in the one-dimensional complex space. Asymptotic analy- sis is carried out for inter and outer solutions to the perturbation characteristic function of the boundary layer equations in multi-field coupling. Examples are given for disturbance analysis in the flow field, showing the turning point from the index oscillation solution to the algebraic solution. With further analysis and calculation on nonlinear eigenfunctions of the contact interface dynamic problems by the eigenvalue relation, an asymptotic per- turbation solution is obtained. Finally, a boundary layer solution to multi-field coupling problems in the contact interface is obtained by asymptotic estimates of eigenvalues for the G-N mode in the large flow limit. Characteristic parameters in the final form of the eigenvalue relation are key factors of the dissipative dynamics in the contact interface.展开更多
According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for geometric...According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for geometrically nonlinear coupled thermoelastodynamics can be established systematically. The new unconventional Hamilton-type variational principle can fully characterize the initial-boundaty-value problem of this dynamics. In this paper, an important integral relation is given, which can be considered as the expression of the generalized principle of virtual work for geometrically nonlinear coupled thermodynamics. Based on this relation, it is possible not only to obtain the principle of virtual work in geometrically nonlinear coupled thermodynamics, but also to derive systematically the complementary functionals for eight-field, six-field, four-field and two-field unconventional Hamilton-type variational principles by the generalized Legendre transformations given in this paper. Furthermore, with this approach, the intrinsic relationship among various principles can be explained clearly.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 10871225)the Pujiang Talent Program of China (No. 06PJ14416)
文摘The dissipative equilibrium dynamics studies the law of fluid motion under constraints in the contact interface of the coupling system. It needs to examine how con- straints act upon the fluid movement, while the fluid movement reacts to the constraint field. It also needs to examine the coupling fluid field and media within the contact in- terface, and to use the multi-scale analysis to solve the regular and singular perturbation problems in micro-phenomena of laboratories and macro-phenomena of nature. This pa- per describes the field affected by the gravity constraints. Applying the multi-scale anal- ysis to the complex Fourier harmonic analysis, scale changes, and the introduction of new parameters, the complex three-dimensional coupling dynamic equations are transformed into a boundary layer problem in the one-dimensional complex space. Asymptotic analy- sis is carried out for inter and outer solutions to the perturbation characteristic function of the boundary layer equations in multi-field coupling. Examples are given for disturbance analysis in the flow field, showing the turning point from the index oscillation solution to the algebraic solution. With further analysis and calculation on nonlinear eigenfunctions of the contact interface dynamic problems by the eigenvalue relation, an asymptotic per- turbation solution is obtained. Finally, a boundary layer solution to multi-field coupling problems in the contact interface is obtained by asymptotic estimates of eigenvalues for the G-N mode in the large flow limit. Characteristic parameters in the final form of the eigenvalue relation are key factors of the dissipative dynamics in the contact interface.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 10172097, 19672074 & 19902022) Research Grand Council of Hong Kong. No. RGC 97/98, HKUST6055/97E.
文摘According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for geometrically nonlinear coupled thermoelastodynamics can be established systematically. The new unconventional Hamilton-type variational principle can fully characterize the initial-boundaty-value problem of this dynamics. In this paper, an important integral relation is given, which can be considered as the expression of the generalized principle of virtual work for geometrically nonlinear coupled thermodynamics. Based on this relation, it is possible not only to obtain the principle of virtual work in geometrically nonlinear coupled thermodynamics, but also to derive systematically the complementary functionals for eight-field, six-field, four-field and two-field unconventional Hamilton-type variational principles by the generalized Legendre transformations given in this paper. Furthermore, with this approach, the intrinsic relationship among various principles can be explained clearly.