期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Acoustic finite-difference modeling beyond conventional Courant-Friedrichs-Lewy stability limit:Approach based on variable-length temporal and spatial operators 被引量:2
1
作者 Hongyu Zhou Yang Liu Jing Wang 《Earthquake Science》 2021年第2期123-136,共14页
Conventional finite-difference(FD)methods cannot model acoustic wave propagation beyond Courant-Friedrichs-Lewy(CFL)numbers 0.707 and 0.577 for two-dimensional(2D)and three-dimensional(3D)equal spacing cases,respectiv... Conventional finite-difference(FD)methods cannot model acoustic wave propagation beyond Courant-Friedrichs-Lewy(CFL)numbers 0.707 and 0.577 for two-dimensional(2D)and three-dimensional(3D)equal spacing cases,respectively,thereby limiting time step selection.Based on the definition of temporal and spatial FD operators,we propose a variable-length temporal and spatial operator strategy to model wave propagation beyond those CFL numbers while preserving accuracy.First,to simulate wave propagation beyond the conventional CFL stability limit,the lengths of the temporal operators are modified to exceed the lengths of the spatial operators for high-velocity zones.Second,to preserve the modeling accuracy,the velocity-dependent lengths of the temporal and spatial operators are adaptively varied.The maximum CFL numbers for the proposed method can reach 1.25 and 1.0 in high velocity contrast 2D and 3D simulation examples,respectively.We demonstrate the effectiveness of our method by modeling wave propagation in simple and complex media. 展开更多
关键词 acoustic wave equation FINITE-DIFFERENCE stability condition courant-friedrichs-lewy numbers variable length.
下载PDF
A stable staggered-grid finite-difference scheme for acoustic modeling beyond conventional stability limit
2
作者 Jing-Yi Xu Yang Liu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期182-194,共13页
Staggered-grid finite-difference(SGFD)schemes have been widely used in acoustic wave modeling for geophysical problems.Many improved methods are proposed to enhance the accuracy of numerical modeling.However,these met... Staggered-grid finite-difference(SGFD)schemes have been widely used in acoustic wave modeling for geophysical problems.Many improved methods are proposed to enhance the accuracy of numerical modeling.However,these methods are inevitably limited by the maximum Courant-Friedrichs-Lewy(CFL)numbers,making them unstable when modeling with large time sampling intervals or small grid spacings.To solve this problem,we extend a stable SGFD scheme by controlling SGFD dispersion relations and maximizing the maximum CFL numbers.First,to improve modeling stability,we minimize the error between the FD dispersion relation and the exact relation in the given wave-number region,and make the FD dispersion approach a given function outside the given wave-number area,thus breaking the conventional limits of the maximum CFL number.Second,to obtain high modeling accuracy,we use the SGFD scheme based on the Remez algorithm to compute the FD coefficients.In addition,the hybrid absorbing boundary condition is adopted to suppress boundary reflections and we find a suitable weighting coefficient for the proposed scheme.Theoretical derivation and numerical modeling demonstrate that the proposed scheme can maintain high accuracy in the modeling process and the value of the maximum CFL number of the proposed scheme can exceed that of the conventional SGFD scheme when adopting a small maximum effective wavenumber,indicating that the proposed scheme improves stability during the modeling. 展开更多
关键词 Acoustic wave Staggered-grid finite-difference(SGFD) modeling courant-friedrichs-lewy(CFL)number Stability
下载PDF
Stability and Time-Step Constraints of Implicit-Explicit Runge-Kutta Methods for the Linearized Korteweg-de Vries Equation
3
作者 Joseph Hunter Zheng Sun Yulong Xing 《Communications on Applied Mathematics and Computation》 EI 2024年第1期658-687,共30页
This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either... This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints. 展开更多
关键词 Linearized Korteweg-de Vries(KdV)equation Implicit-explicit(IMEX)Runge-Kutta(RK)method STABILITY courant-friedrichs-lewy(CFL)condition Finite difference(FD)method Local discontinuous Galerkin(DG)method
下载PDF
Stable Runge-Kutta discontinuous Galerkin solver for hypersonic rarefied gaseous flow based on 2D Boltzmann kinetic model equations
4
作者 Wei SU Zhenyu TANG +1 位作者 Bijiao HE Guobiao CAI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第3期343-362,共20页
A stable high-order Runge-Kutta discontinuous Galerkin(RKDG) scheme that strictly preserves positivity of the solution is designed to solve the Boltzmann kinetic equation with model collision integrals. Stability is k... A stable high-order Runge-Kutta discontinuous Galerkin(RKDG) scheme that strictly preserves positivity of the solution is designed to solve the Boltzmann kinetic equation with model collision integrals. Stability is kept by accuracy of velocity discretization, conservative calculation of the discrete collision relaxation term, and a limiter. By keeping the time step smaller than the local mean collision time and forcing positivity values of velocity distribution functions on certain points, the limiter can preserve positivity of solutions to the cell average velocity distribution functions. Verification is performed with a normal shock wave at a Mach number 2.05, a hypersonic flow about a two-dimensional(2D) cylinder at Mach numbers 6.0 and 12.0, and an unsteady shock tube flow. The results show that, the scheme is stable and accurate to capture shock structures in steady and unsteady hypersonic rarefied gaseous flows. Compared with two widely used limiters, the current limiter has the advantage of easy implementation and ability of minimizing the influence of accuracy of the original RKDG method. 展开更多
关键词 model equation hypersonic flow discontinuous Galerkin (DG) conservative discretization positivity-preserving limiter courant-friedrichs-lewy (CFL) condition
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部