期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Acoustic finite-difference modeling beyond conventional Courant-Friedrichs-Lewy stability limit:Approach based on variable-length temporal and spatial operators 被引量:2
1
作者 Hongyu Zhou Yang Liu Jing Wang 《Earthquake Science》 2021年第2期123-136,共14页
Conventional finite-difference(FD)methods cannot model acoustic wave propagation beyond Courant-Friedrichs-Lewy(CFL)numbers 0.707 and 0.577 for two-dimensional(2D)and three-dimensional(3D)equal spacing cases,respectiv... Conventional finite-difference(FD)methods cannot model acoustic wave propagation beyond Courant-Friedrichs-Lewy(CFL)numbers 0.707 and 0.577 for two-dimensional(2D)and three-dimensional(3D)equal spacing cases,respectively,thereby limiting time step selection.Based on the definition of temporal and spatial FD operators,we propose a variable-length temporal and spatial operator strategy to model wave propagation beyond those CFL numbers while preserving accuracy.First,to simulate wave propagation beyond the conventional CFL stability limit,the lengths of the temporal operators are modified to exceed the lengths of the spatial operators for high-velocity zones.Second,to preserve the modeling accuracy,the velocity-dependent lengths of the temporal and spatial operators are adaptively varied.The maximum CFL numbers for the proposed method can reach 1.25 and 1.0 in high velocity contrast 2D and 3D simulation examples,respectively.We demonstrate the effectiveness of our method by modeling wave propagation in simple and complex media. 展开更多
关键词 acoustic wave equation FINITE-DIFFERENCE stability condition courant-friedrichs-lewy numbers variable length.
下载PDF
A stable staggered-grid finite-difference scheme for acoustic modeling beyond conventional stability limit
2
作者 Jing-Yi Xu Yang Liu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期182-194,共13页
Staggered-grid finite-difference(SGFD)schemes have been widely used in acoustic wave modeling for geophysical problems.Many improved methods are proposed to enhance the accuracy of numerical modeling.However,these met... Staggered-grid finite-difference(SGFD)schemes have been widely used in acoustic wave modeling for geophysical problems.Many improved methods are proposed to enhance the accuracy of numerical modeling.However,these methods are inevitably limited by the maximum Courant-Friedrichs-Lewy(CFL)numbers,making them unstable when modeling with large time sampling intervals or small grid spacings.To solve this problem,we extend a stable SGFD scheme by controlling SGFD dispersion relations and maximizing the maximum CFL numbers.First,to improve modeling stability,we minimize the error between the FD dispersion relation and the exact relation in the given wave-number region,and make the FD dispersion approach a given function outside the given wave-number area,thus breaking the conventional limits of the maximum CFL number.Second,to obtain high modeling accuracy,we use the SGFD scheme based on the Remez algorithm to compute the FD coefficients.In addition,the hybrid absorbing boundary condition is adopted to suppress boundary reflections and we find a suitable weighting coefficient for the proposed scheme.Theoretical derivation and numerical modeling demonstrate that the proposed scheme can maintain high accuracy in the modeling process and the value of the maximum CFL number of the proposed scheme can exceed that of the conventional SGFD scheme when adopting a small maximum effective wavenumber,indicating that the proposed scheme improves stability during the modeling. 展开更多
关键词 Acoustic wave Staggered-grid finite-difference(SGFD) modeling courant-friedrichs-lewy(cfl)number Stability
下载PDF
Stability and Time-Step Constraints of Implicit-Explicit Runge-Kutta Methods for the Linearized Korteweg-de Vries Equation
3
作者 Joseph Hunter Zheng Sun Yulong Xing 《Communications on Applied Mathematics and Computation》 EI 2024年第1期658-687,共30页
This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either... This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints. 展开更多
关键词 Linearized Korteweg-de Vries(KdV)equation Implicit-explicit(IMEX)Runge-Kutta(RK)method STABILITY courant-friedrichs-lewy(cfl)condition Finite difference(FD)method Local discontinuous Galerkin(DG)method
下载PDF
二维圆柱层流绕流及其控制数值模拟 被引量:15
4
作者 张群峰 何鸿涛 吕志咏 《科学技术与工程》 2009年第5期1187-1193,共7页
采用有限体积法求解二维N-S方程,通过改变时间、空间计算参数,对雷诺数100的二维圆柱非定常流场进行了数值模拟,将所得结果与实验数据以及已有的计算结果进行了对比。并对在尾部多个位置加入不同长度阻隔板控制流动的圆柱流场进行了考... 采用有限体积法求解二维N-S方程,通过改变时间、空间计算参数,对雷诺数100的二维圆柱非定常流场进行了数值模拟,将所得结果与实验数据以及已有的计算结果进行了对比。并对在尾部多个位置加入不同长度阻隔板控制流动的圆柱流场进行了考察。结果发现:在合适的位置放置阻隔板,可以有效抑制尾迹中涡脱落的形成。 展开更多
关键词 cfl 斯特劳哈数 圆柱绕流 涡脱落控制
下载PDF
局部时间步法在低马赫燃烧模拟中的适用性研究
5
作者 姚卫 孙超 +3 位作者 刘杭 吴梅 杨少波 曹顺利 《燃烧科学与技术》 EI CAS CSCD 北大核心 2021年第3期321-333,共13页
在复杂燃烧模拟中由于整场流速的不均匀性和局部网格尺寸的差异,各局部流场区域的CFL数差异较大.传统的基于整场最大CFL数定义的整体时间步法严重制约计算效率.本文首次考察了基于当地CFL数限制的局部时间步法在低马赫数湍流燃烧模拟中... 在复杂燃烧模拟中由于整场流速的不均匀性和局部网格尺寸的差异,各局部流场区域的CFL数差异较大.传统的基于整场最大CFL数定义的整体时间步法严重制约计算效率.本文首次考察了基于当地CFL数限制的局部时间步法在低马赫数湍流燃烧模拟中的适用性.对开放空间中甲烷池火(1065万网格)和封闭空间建筑火灾(320万网格)的大涡模拟表明,采用局部时间步法相比于整体时间步法分别实现了6倍和8倍的加速比.加速比随网格尺度减小呈增加趋势.研究进一步从两个方面验证了局部时间步法在低马赫数燃烧模拟中的准确性:①与实验数据的对比表明,由于低马赫数燃烧的准稳态特性,局部和整体时间步法均较为准确地预测了温度的时间变化特性;②对时均流场的比较表明,除微量痕迹物(质量分数小于0.1%)以外,两种方法对时均温度、时均速度和氧气体积分数的预测差异均较小.研究中还对现有的PaSR湍流燃烧模型和压力求解算法进行了改进和优化,以分别提高其物理准确性和鲁棒性. 展开更多
关键词 湍流燃烧 局部时间步法 大涡模拟 cfl OPENFOAM
下载PDF
自适应大时间步长格式在一维浅水方程中的应用
6
作者 王冬旭 李玉星 李爽 《科学技术与工程》 北大核心 2020年第23期9597-9602,共6页
针对一维浅水方程提出了一种自适应大时间步长格式,依据波头与波尾传播速度差的绝对值,确定稀疏波近似波数。当波头与波尾速度相近时,稀疏波采用双波近似,以提高计算效率;当波头与波尾速度差距较大时,稀疏波采用十波近似,以获得较高计... 针对一维浅水方程提出了一种自适应大时间步长格式,依据波头与波尾传播速度差的绝对值,确定稀疏波近似波数。当波头与波尾速度相近时,稀疏波采用双波近似,以提高计算效率;当波头与波尾速度差距较大时,稀疏波采用十波近似,以获得较高计算精度。同时通过数值结果对比发现随机选取法(random choice method,RCM)可以有效抑制平台区域的震荡,但随着Courant-Friedrichs-Lewy(CFL)数和时间的增加,RCM对间断处短波震荡抑制效果逐渐减弱。 展开更多
关键词 自适应 大时间步长 浅水方程 数值震荡 cfl
下载PDF
Stable Runge-Kutta discontinuous Galerkin solver for hypersonic rarefied gaseous flow based on 2D Boltzmann kinetic model equations
7
作者 Wei SU Zhenyu TANG +1 位作者 Bijiao HE Guobiao CAI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第3期343-362,共20页
A stable high-order Runge-Kutta discontinuous Galerkin(RKDG) scheme that strictly preserves positivity of the solution is designed to solve the Boltzmann kinetic equation with model collision integrals. Stability is k... A stable high-order Runge-Kutta discontinuous Galerkin(RKDG) scheme that strictly preserves positivity of the solution is designed to solve the Boltzmann kinetic equation with model collision integrals. Stability is kept by accuracy of velocity discretization, conservative calculation of the discrete collision relaxation term, and a limiter. By keeping the time step smaller than the local mean collision time and forcing positivity values of velocity distribution functions on certain points, the limiter can preserve positivity of solutions to the cell average velocity distribution functions. Verification is performed with a normal shock wave at a Mach number 2.05, a hypersonic flow about a two-dimensional(2D) cylinder at Mach numbers 6.0 and 12.0, and an unsteady shock tube flow. The results show that, the scheme is stable and accurate to capture shock structures in steady and unsteady hypersonic rarefied gaseous flows. Compared with two widely used limiters, the current limiter has the advantage of easy implementation and ability of minimizing the influence of accuracy of the original RKDG method. 展开更多
关键词 model equation hypersonic flow discontinuous Galerkin (DG) conservative discretization positivity-preserving limiter courant-friedrichs-lewy (cfl) condition
下载PDF
A robust implicit high-order discontinuous Galerkin method for solving compressible Navier-Stokes equations on arbitrary grids
8
作者 Jia Yan Xiaoquan Yang Peifen Weng 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2024年第8期96-119,共24页
The primary impediments impeding the implementation of high-order methods in simulating viscous flow over complex configurations are robustness and convergence.These challenges impose significant constraints on comput... The primary impediments impeding the implementation of high-order methods in simulating viscous flow over complex configurations are robustness and convergence.These challenges impose significant constraints on computational efficiency,particularly in the domain of engineering applications.To address these concerns,this paper proposes a robust implicit high-order discontinuous Galerkin(DG)method for solving compressible Navier-Stokes(NS)equations on arbitrary grids.The method achieves a favorable equilibrium between computational stability and efficiency.To solve the linear system,an exact Jacobian matrix solving strategy is employed for preconditioning and matrix-vector generation in the generalized minimal residual(GMRES)method.This approach mitigates numerical errors in Jacobian solution during implicit calculations and facilitates the implementation of an adaptive Courant-Friedrichs-Lewy(CFL)number increasing strategy,with the aim of improving convergence and robustness.To further enhance the applicability of the proposed method for intricate grid distortions,all simulations are performed in the reference domain.This practice significantly improves the reversibility of the mass matrix in implicit calculations.A comprehensive analysis of various parameters influencing computational stability and efficiency is conducted,including CFL number,Krylov subspace size,and GMRES convergence criteria.The computed results from a series of numerical test cases demonstrate the promising results achieved by combining the DG method,GMRES solver,exact Jacobian matrix,adaptive CFL number,and reference domain calculations in terms of robustness,convergence,and accuracy.These analysis results can serve as a reference for implicit computation in high-order calculations. 展开更多
关键词 Discontinuous Galerkin method Exact Jacobian matrix GMRES solver Adaptive cfl number Reference domain HIGH-ORDER
原文传递
一维浅水流动的一种大时间步长数值格式 被引量:4
9
作者 许仁义 钟德钰 吴保生 《水利学报》 EI CSCD 北大核心 2012年第S2期41-47,共7页
针对一维浅水方程提出了一种大时间步长格式(LTS),使用这种大时间步长格式可以获得较高的分辨率和计算效率。这种格式最初是由LeVeque提出来的,最近被用于空气动力学的欧拉方程组。在本格式中,传统的近似黎曼求解器被替换成精确黎曼求... 针对一维浅水方程提出了一种大时间步长格式(LTS),使用这种大时间步长格式可以获得较高的分辨率和计算效率。这种格式最初是由LeVeque提出来的,最近被用于空气动力学的欧拉方程组。在本格式中,传统的近似黎曼求解器被替换成精确黎曼求解器与行波法相结合。当CFL数小于1时,稀疏波采用单波近似就取得了很高的分辨率,但是当CFL数大于1,必须采用两波近似才能保证计算结果是正确的。相比于本格式在空气动力学中的应用,这里采用了更加简化的方法。在空气动力学中,通过等熵流条件来获得稀疏波近似状态变量的值,而在本格式中直接采用波头与波尾的平均。结果证明,采用这种简化对结果没有影响。当CFL数大于10的时候必须对波相撞进行处理以保证结果正确,但是仍然有振荡存在。当CFL数大于15时结果就失真了。通过比较,CFL数在5以下本格式能取得较高的分辨率和计算效率,大于5时,振荡会越来越大,计算效率提高也有限。 展开更多
关键词 大时间步长 浅水流 黎曼求解器 行波法 cfl
原文传递
A large time step Godunov scheme for free-surface shallow water equations 被引量:5
10
作者 Renyi Xu Deyu Zhong +2 位作者 Baosheng Wu Xudong Fu Runze Miao 《Chinese Science Bulletin》 SCIE EI CAS 2014年第21期2534-2540,共7页
An algorithm for simulating free surface flows is presented using large time step based on the wave-propagation method proposed by LeVeque,and an exact Riemann solver is used.A multiple wave approximation approach was... An algorithm for simulating free surface flows is presented using large time step based on the wave-propagation method proposed by LeVeque,and an exact Riemann solver is used.A multiple wave approximation approach was suggested for eliminating the discontinuities found in the rarefaction fans of dam-breaking flows.In addition,we use the random choice method to reduce non-physical oscillations.Applications demonstrate that the algorithm proposed in this paper can considerably increase the CFL number up to 25when modeling dam-break flows,while retaining satisfactory accuracy and efficiency.This suggests that our algorithm has the potential to be applied to modeling free surface flows. 展开更多
关键词 自由表面流动 Godunov格式 大时间步长 浅水方程 不连续性 近似方法 随机选择 溃坝流动
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部