AIM:To investigate the efficiency of Cox proportional hazard model in detecting prognostic factors for gastric cancer.METHODS:We used the log-normal regression model to evaluate prognostic factors in gastric cancer an...AIM:To investigate the efficiency of Cox proportional hazard model in detecting prognostic factors for gastric cancer.METHODS:We used the log-normal regression model to evaluate prognostic factors in gastric cancer and compared it with the Cox model.Three thousand and eighteen gastric cancer patients who received a gastrectomy between 1980 and 2004 were retrospectively evaluated.Clinic-pathological factors were included in a log-normal model as well as Cox model.The akaike information criterion (AIC) was employed to compare the efficiency of both models.Univariate analysis indicated that age at diagnosis,past history,cancer location,distant metastasis status,surgical curative degree,combined other organ resection,Borrmann type,Lauren's classification,pT stage,total dissected nodes and pN stage were prognostic factors in both log-normal and Cox models.RESULTS:In the final multivariate model,age at diagnosis,past history,surgical curative degree,Borrmann type,Lauren's classification,pT stage,and pN stage were significant prognostic factors in both log-normal and Cox models.However,cancer location,distant metastasis status,and histology types were found to be significant prognostic factors in log-normal results alone.According to AIC,the log-normal model performed better than the Cox proportional hazard model (AIC value:2534.72 vs 1693.56).CONCLUSION:It is suggested that the log-normal regression model can be a useful statistical model to evaluate prognostic factors instead of the Cox proportional hazard model.展开更多
电力电缆故障信息的深层次挖掘可提高对电缆故障影响因素的分析。因此,针对某供电公司10 k V电力电缆故障数据,运用统计学模型—Cox比例风险模型,定量分析了电缆故障影响因素,用以指导电缆采购、施工、运行和维护。为确保数据分析的准确...电力电缆故障信息的深层次挖掘可提高对电缆故障影响因素的分析。因此,针对某供电公司10 k V电力电缆故障数据,运用统计学模型—Cox比例风险模型,定量分析了电缆故障影响因素,用以指导电缆采购、施工、运行和维护。为确保数据分析的准确性,提出了电缆数据预处理原则,探讨了合适的样本量大小。运用Cox比例风险模型对电缆故障影响因素进行单因素分析;运用Logistic回归模型确定了电缆故障影响因素类别,并统计计算了各电缆故障影响因素对应的电缆故障率,确定了各影响因素组成元素的相对危险程度,最终证明了Cox比例风险模型分析结果的正确性。结果表明:本体生产厂家M1、附件生产厂家N1、施工单位I3对应的电缆故障率最高分别为0.33、0.29、0.218,企业在进行电缆采购、施工、维护时应着重关注这3家单位。展开更多
Amyotrophic lateral sclerosis is a rare neurodegenerative disease characterized by the involvement of both upper and lower motor neurons.Early bilateral limb involvement significantly affects patients'daily lives ...Amyotrophic lateral sclerosis is a rare neurodegenerative disease characterized by the involvement of both upper and lower motor neurons.Early bilateral limb involvement significantly affects patients'daily lives and may lead them to be confined to bed.However,the effect of upper and lower motor neuron impairment and other risk factors on bilateral limb involvement is unclear.To address this issue,we retrospectively collected data from 586 amyotrophic lateral sclerosis patients with limb onset diagnosed at Peking University Third Hospital between January 2020 and May 2022.A univariate analysis revealed no significant differences in the time intervals of spread in different directions between individuals with upper motor neuron-dominant amyotrophic lateral sclerosis and those with classic amyotrophic lateral sclerosis.We used causal directed acyclic graphs for risk factor determination and Cox proportional hazards models to investigate the association between the duration of bilateral limb involvement and clinical baseline characteristics in amyotrophic lateral sclerosis patients.Multiple factor analyses revealed that higher upper motor neuron scores(hazard ratio[HR]=1.05,95%confidence interval[CI]=1.01–1.09,P=0.018),onset in the left limb(HR=0.72,95%CI=0.58–0.89,P=0.002),and a horizontal pattern of progression(HR=0.46,95%CI=0.37–0.58,P<0.001)were risk factors for a shorter interval until bilateral limb involvement.The results demonstrated that a greater degree of upper motor neuron involvement might cause contralateral limb involvement to progress more quickly in limb-onset amyotrophic lateral sclerosis patients.These findings may improve the management of amyotrophic lateral sclerosis patients with limb onset and the prediction of patient prognosis.展开更多
目的采用随机生存森林算法分析影响肝动脉化疗栓塞(transcatheter arterial chemoembolization,TACE)治疗不可切除肝细胞癌(hepatocellular carcinoma,HCC)患者的预后因素,并构建预后模型。方法回顾性选择2014年1月至2017年12月复旦大...目的采用随机生存森林算法分析影响肝动脉化疗栓塞(transcatheter arterial chemoembolization,TACE)治疗不可切除肝细胞癌(hepatocellular carcinoma,HCC)患者的预后因素,并构建预后模型。方法回顾性选择2014年1月至2017年12月复旦大学附属中山医院肝肿瘤内科收治的一线治疗为TACE的HCC患者636例,并按照7∶3比例划分为训练集(n=445)和验证集(n=191)。根据患者的临床数据、实验室指标及随访生存数据,建立Cox比例风险模型和基于机器学习算法的随机生存森林模型,并评估2种模型的预测能力。结果肿瘤负荷、年龄、基线G-谷氨酰转肽酶水平、基线甲胎蛋白水平和白蛋白-胆红素分级是影响TACE治疗不能切除HCC患者的独立预后因素。Cox回归模型的训练集1年、3年、5年的ROC曲线下面积(area under the curve,AUC)为0.782、0.796和0.791,验证集为0.750、0.766和0.766。随机生存森林模型训练集1年、3年和5年AUC为0.896、0.894和0.875,验证集为0.743、0.763和0.770。随机生存森林模型能将患者区分为预后好组和预后差组,两组生存期差异有统计学意义(P<0.05)。决策曲线显示随机生存森林模型的净获益优于Cox比例风险模型。结论随机生存森林模型是预测TACE治疗不可切除HCC患者预后的可靠工具。展开更多
基金Supported by the Gastric Cancer Laboratory and Pathology Department of Chinese Medical University,Shenyang,Chinathe Science and Technology Program of Shenyang,No. 1081232-1-00
文摘AIM:To investigate the efficiency of Cox proportional hazard model in detecting prognostic factors for gastric cancer.METHODS:We used the log-normal regression model to evaluate prognostic factors in gastric cancer and compared it with the Cox model.Three thousand and eighteen gastric cancer patients who received a gastrectomy between 1980 and 2004 were retrospectively evaluated.Clinic-pathological factors were included in a log-normal model as well as Cox model.The akaike information criterion (AIC) was employed to compare the efficiency of both models.Univariate analysis indicated that age at diagnosis,past history,cancer location,distant metastasis status,surgical curative degree,combined other organ resection,Borrmann type,Lauren's classification,pT stage,total dissected nodes and pN stage were prognostic factors in both log-normal and Cox models.RESULTS:In the final multivariate model,age at diagnosis,past history,surgical curative degree,Borrmann type,Lauren's classification,pT stage,and pN stage were significant prognostic factors in both log-normal and Cox models.However,cancer location,distant metastasis status,and histology types were found to be significant prognostic factors in log-normal results alone.According to AIC,the log-normal model performed better than the Cox proportional hazard model (AIC value:2534.72 vs 1693.56).CONCLUSION:It is suggested that the log-normal regression model can be a useful statistical model to evaluate prognostic factors instead of the Cox proportional hazard model.
文摘电力电缆故障信息的深层次挖掘可提高对电缆故障影响因素的分析。因此,针对某供电公司10 k V电力电缆故障数据,运用统计学模型—Cox比例风险模型,定量分析了电缆故障影响因素,用以指导电缆采购、施工、运行和维护。为确保数据分析的准确性,提出了电缆数据预处理原则,探讨了合适的样本量大小。运用Cox比例风险模型对电缆故障影响因素进行单因素分析;运用Logistic回归模型确定了电缆故障影响因素类别,并统计计算了各电缆故障影响因素对应的电缆故障率,确定了各影响因素组成元素的相对危险程度,最终证明了Cox比例风险模型分析结果的正确性。结果表明:本体生产厂家M1、附件生产厂家N1、施工单位I3对应的电缆故障率最高分别为0.33、0.29、0.218,企业在进行电缆采购、施工、维护时应着重关注这3家单位。
基金supported by the National Natural Science Foundation of China,Nos.82071426,81873784Clinical Cohort Construction Program of Peking University Third Hospital,No.BYSYDL2019002(all to DF)。
文摘Amyotrophic lateral sclerosis is a rare neurodegenerative disease characterized by the involvement of both upper and lower motor neurons.Early bilateral limb involvement significantly affects patients'daily lives and may lead them to be confined to bed.However,the effect of upper and lower motor neuron impairment and other risk factors on bilateral limb involvement is unclear.To address this issue,we retrospectively collected data from 586 amyotrophic lateral sclerosis patients with limb onset diagnosed at Peking University Third Hospital between January 2020 and May 2022.A univariate analysis revealed no significant differences in the time intervals of spread in different directions between individuals with upper motor neuron-dominant amyotrophic lateral sclerosis and those with classic amyotrophic lateral sclerosis.We used causal directed acyclic graphs for risk factor determination and Cox proportional hazards models to investigate the association between the duration of bilateral limb involvement and clinical baseline characteristics in amyotrophic lateral sclerosis patients.Multiple factor analyses revealed that higher upper motor neuron scores(hazard ratio[HR]=1.05,95%confidence interval[CI]=1.01–1.09,P=0.018),onset in the left limb(HR=0.72,95%CI=0.58–0.89,P=0.002),and a horizontal pattern of progression(HR=0.46,95%CI=0.37–0.58,P<0.001)were risk factors for a shorter interval until bilateral limb involvement.The results demonstrated that a greater degree of upper motor neuron involvement might cause contralateral limb involvement to progress more quickly in limb-onset amyotrophic lateral sclerosis patients.These findings may improve the management of amyotrophic lateral sclerosis patients with limb onset and the prediction of patient prognosis.
文摘目的采用随机生存森林算法分析影响肝动脉化疗栓塞(transcatheter arterial chemoembolization,TACE)治疗不可切除肝细胞癌(hepatocellular carcinoma,HCC)患者的预后因素,并构建预后模型。方法回顾性选择2014年1月至2017年12月复旦大学附属中山医院肝肿瘤内科收治的一线治疗为TACE的HCC患者636例,并按照7∶3比例划分为训练集(n=445)和验证集(n=191)。根据患者的临床数据、实验室指标及随访生存数据,建立Cox比例风险模型和基于机器学习算法的随机生存森林模型,并评估2种模型的预测能力。结果肿瘤负荷、年龄、基线G-谷氨酰转肽酶水平、基线甲胎蛋白水平和白蛋白-胆红素分级是影响TACE治疗不能切除HCC患者的独立预后因素。Cox回归模型的训练集1年、3年、5年的ROC曲线下面积(area under the curve,AUC)为0.782、0.796和0.791,验证集为0.750、0.766和0.766。随机生存森林模型训练集1年、3年和5年AUC为0.896、0.894和0.875,验证集为0.743、0.763和0.770。随机生存森林模型能将患者区分为预后好组和预后差组,两组生存期差异有统计学意义(P<0.05)。决策曲线显示随机生存森林模型的净获益优于Cox比例风险模型。结论随机生存森林模型是预测TACE治疗不可切除HCC患者预后的可靠工具。