Methacrylic acid was used together with a molecular imprinting technique to modify chitosan. In addition, the adsorption kinetics and adsorption isotherms were recorded and the results were analyzed to investigate rep...Methacrylic acid was used together with a molecular imprinting technique to modify chitosan. In addition, the adsorption kinetics and adsorption isotherms were recorded and the results were analyzed to investigate reparative adsorption for Cr(VI) from the polluted Xiangjiang River water. A comparative X-ray analysis shows that the degree of crystallization in the imprinted polymer was significantly weakened, the area of the non-crystalline region was larger. There were more adsorption sites in the imprinted polymer, and the adsorption capacity towards Cr(VI) was increased. The adsorption capacity of the imprinted polymer towards Cr(VI) increased with time and reaches saturation after 8 h. The optimal adsorption time was 4-8 h after the adsorption starting and the optimal pH value for the solution was in the range of 4.5-7.5. When the chitosan reaches saturation, the adsorption capacity achieves a state of equilibrium, and the maximum Cr(VI) extraction rate reaches 33.7%. Moreover, the adsorption capacity of the imprinted polymer towards Cr(VI) increases with increasing chitosan concentration. In this situation, the Cr(VI) extraction rate shows little variation, and the maximum removal rate can reach 98.3%. Furthermore, the Cr(VI) extraction rate increases with an increase in the degree of deacetylation in the chatoyant and chitosan, with the best adsorption effect corresponding to 90% deacetylation. Fitting the adsorption data to the quasi first- and second-order kinetic models yields correlation coefficients of 0.9013 and 0.9875, respectively. The corresponding rate constants for the two models are 0.0091 min-1 and 7.129 g/(mg.min), respectively. Hence, the adsorption using Cr(VI)-imprinted chitosan is more consistent with the second-order kinetics. Comparing the data to Freundlich and Langrnuir adsorption isotherms shows that the latter has a better linear fit and a maximum adsorption capacity of 15.784 mg/g.展开更多
Water samples from chromite mine quarry of Sukinda and its adjacent areas were analyzed for their heavy metal contamination along with physico-chemical and microbial contents. The chromite mine water samples possessed...Water samples from chromite mine quarry of Sukinda and its adjacent areas were analyzed for their heavy metal contamination along with physico-chemical and microbial contents. The chromite mine water samples possessed high concentrations of heavy metals in the order of Cr〉Fe〉Zn〉Ni〉Co〉Mn while ground water did not show any heavy metal contamination except Fe. Physico-chemical parameters of mine water samples showed deviation from those of normal water. Mine water harboured low microbial populations of bacteria, fungi and actinomycetes in comparison with mine adjacent water samples. The correlation of data between metals with physico-chemical parameters showed both positive and negative responses while that of metal and microbial population exhibited negative correlation. Bacterial strains isolated from chromite mine water exhibited high tolerance towards chromium and other heavy metals as well as antibiotics which could be used as an indicator of heavy metal pollution.展开更多
Bioremediation plays an increasingly important role in the remediation of chromium-contaminated soil because it is an environmentally friendly technology. To investigate the Cr(Ⅵ)reduction process by indigenous micro...Bioremediation plays an increasingly important role in the remediation of chromium-contaminated soil because it is an environmentally friendly technology. To investigate the Cr(Ⅵ)reduction process by indigenous microorganisms in soil, a batch of incubation experiments were carried out in a bioreactor under aerobic conditions. The results showed that in the presence of indigenous microorganisms, the Cr(Ⅵ) concentration in the chromium-contaminated soil decreased from 1521.9 to 199.2 mg/kg within 66 h with culture medium addition, while a slight decrease in the Cr(Ⅵ) concentration was found in the sterilized soil,implying that the indigenous microorganisms contributed to the Cr(Ⅵ) reduction. In the microbial remediation process, Cr(Ⅵ)microbial reduction occurred after the reduction of NO3-, Mn4+ and Fe3+ and,before SO42- reduction. The reduction process of Cr(Ⅵ) can be divided into two phases, characterized by the exponential equation model of microbial reduction and the linear equation model of the combined effect of the major ions. It can be concluded that indigenous Cr(Ⅵ)-reducing bacteria have a potential application for in-situ remediation of Cr(Ⅵ)-contaminated soil.展开更多
Here, PbCrO4 nanorods, a commonly used and low-cost yellow pigment, was synthesized via a simple pre-cipitation reaction and can serve as a highly efficient oxygen production and photodegradation photocatalyst. The ob...Here, PbCrO4 nanorods, a commonly used and low-cost yellow pigment, was synthesized via a simple pre-cipitation reaction and can serve as a highly efficient oxygen production and photodegradation photocatalyst. The obtained PbCrO4 nanorods exhibit excellent stability and pho-tocatalytic performance for O2 evolution from water. The production rate is approximately 314.0μmol h^-1 g^-1 under visible light, and the quantum efficiency is approximately 2.16% at 420±10 nm and 0.05% at 600±10 nm. In addition, the PhCrO4 shows good degradation performance for methylene blue, methyl blue, methyl orange and phenol under visible-light irradiation. These results indicate that it is potential to fabricate an effective, robust PbCrO4 photocatalyst by trans-forming heavy-metal pollutants Pb(II) and Cr(VI) into a highly efficient O2 evolution and photodegradation material. This strategy which uses pollutant to produce clean energy and degrade contaminants is completely green and environmentally benign, and thus could be a promising way for practical environmental applications. Keywords: 02 evolution, pollutant, PbCrO4 nanorods, visible-light-active, photocatalyst展开更多
基金Project(41271332)supported by the National Natural Science Foundation of ChinaProject(2010YBB186)supported by the Social Science Foundation of Hunan Province,Chian
文摘Methacrylic acid was used together with a molecular imprinting technique to modify chitosan. In addition, the adsorption kinetics and adsorption isotherms were recorded and the results were analyzed to investigate reparative adsorption for Cr(VI) from the polluted Xiangjiang River water. A comparative X-ray analysis shows that the degree of crystallization in the imprinted polymer was significantly weakened, the area of the non-crystalline region was larger. There were more adsorption sites in the imprinted polymer, and the adsorption capacity towards Cr(VI) was increased. The adsorption capacity of the imprinted polymer towards Cr(VI) increased with time and reaches saturation after 8 h. The optimal adsorption time was 4-8 h after the adsorption starting and the optimal pH value for the solution was in the range of 4.5-7.5. When the chitosan reaches saturation, the adsorption capacity achieves a state of equilibrium, and the maximum Cr(VI) extraction rate reaches 33.7%. Moreover, the adsorption capacity of the imprinted polymer towards Cr(VI) increases with increasing chitosan concentration. In this situation, the Cr(VI) extraction rate shows little variation, and the maximum removal rate can reach 98.3%. Furthermore, the Cr(VI) extraction rate increases with an increase in the degree of deacetylation in the chatoyant and chitosan, with the best adsorption effect corresponding to 90% deacetylation. Fitting the adsorption data to the quasi first- and second-order kinetic models yields correlation coefficients of 0.9013 and 0.9875, respectively. The corresponding rate constants for the two models are 0.0091 min-1 and 7.129 g/(mg.min), respectively. Hence, the adsorption using Cr(VI)-imprinted chitosan is more consistent with the second-order kinetics. Comparing the data to Freundlich and Langrnuir adsorption isotherms shows that the latter has a better linear fit and a maximum adsorption capacity of 15.784 mg/g.
基金Financial support of the UGC-DAE, Center for Scientific Research, Kolkata Centre
文摘Water samples from chromite mine quarry of Sukinda and its adjacent areas were analyzed for their heavy metal contamination along with physico-chemical and microbial contents. The chromite mine water samples possessed high concentrations of heavy metals in the order of Cr〉Fe〉Zn〉Ni〉Co〉Mn while ground water did not show any heavy metal contamination except Fe. Physico-chemical parameters of mine water samples showed deviation from those of normal water. Mine water harboured low microbial populations of bacteria, fungi and actinomycetes in comparison with mine adjacent water samples. The correlation of data between metals with physico-chemical parameters showed both positive and negative responses while that of metal and microbial population exhibited negative correlation. Bacterial strains isolated from chromite mine water exhibited high tolerance towards chromium and other heavy metals as well as antibiotics which could be used as an indicator of heavy metal pollution.
基金Project(2018SK2044)supported by the Innovation Program of Science&Technology of Hunan Province,ChinaProject(51304250)supported by the National Natural Science Foundation of China
文摘Bioremediation plays an increasingly important role in the remediation of chromium-contaminated soil because it is an environmentally friendly technology. To investigate the Cr(Ⅵ)reduction process by indigenous microorganisms in soil, a batch of incubation experiments were carried out in a bioreactor under aerobic conditions. The results showed that in the presence of indigenous microorganisms, the Cr(Ⅵ) concentration in the chromium-contaminated soil decreased from 1521.9 to 199.2 mg/kg within 66 h with culture medium addition, while a slight decrease in the Cr(Ⅵ) concentration was found in the sterilized soil,implying that the indigenous microorganisms contributed to the Cr(Ⅵ) reduction. In the microbial remediation process, Cr(Ⅵ)microbial reduction occurred after the reduction of NO3-, Mn4+ and Fe3+ and,before SO42- reduction. The reduction process of Cr(Ⅵ) can be divided into two phases, characterized by the exponential equation model of microbial reduction and the linear equation model of the combined effect of the major ions. It can be concluded that indigenous Cr(Ⅵ)-reducing bacteria have a potential application for in-situ remediation of Cr(Ⅵ)-contaminated soil.
基金jointly supported by the National Natural Science Foundation of China(21401190)the Science and Technology Project of Research Foundation of China Postdoctoral Science(2017M612710 and 2016M592519)+2 种基金Shenzhen Peacock Plan(827-000059,827-000113 and KQTD2016053112042971)the Science and Technology Planning Project of Guangdong Province(2016B050501005)the Educational Commission of Guangdong Province(2016KCXTD006 and 2016KSTCX126)
文摘Here, PbCrO4 nanorods, a commonly used and low-cost yellow pigment, was synthesized via a simple pre-cipitation reaction and can serve as a highly efficient oxygen production and photodegradation photocatalyst. The obtained PbCrO4 nanorods exhibit excellent stability and pho-tocatalytic performance for O2 evolution from water. The production rate is approximately 314.0μmol h^-1 g^-1 under visible light, and the quantum efficiency is approximately 2.16% at 420±10 nm and 0.05% at 600±10 nm. In addition, the PhCrO4 shows good degradation performance for methylene blue, methyl blue, methyl orange and phenol under visible-light irradiation. These results indicate that it is potential to fabricate an effective, robust PbCrO4 photocatalyst by trans-forming heavy-metal pollutants Pb(II) and Cr(VI) into a highly efficient O2 evolution and photodegradation material. This strategy which uses pollutant to produce clean energy and degrade contaminants is completely green and environmentally benign, and thus could be a promising way for practical environmental applications. Keywords: 02 evolution, pollutant, PbCrO4 nanorods, visible-light-active, photocatalyst