A Cr/Cr2N/CrN multilayer coating with a thickness of 24.4 μm was deposited by multi-arc ion plating. The coating was systematically characterized by field emission scanning electron microscopy(FESEM), X-ray photoelec...A Cr/Cr2N/CrN multilayer coating with a thickness of 24.4 μm was deposited by multi-arc ion plating. The coating was systematically characterized by field emission scanning electron microscopy(FESEM), X-ray photoelectron spectrometry(XPS), energy dispersive spectroscopy(EDS), X-ray diffraction(XRD) and transmission electron microscopy(TEM). Hardness and adhesion were tested by nanoindentation and scratch tester, respectively. The friction properties were investigated by a reciprocating UMT-3MT ball-on-disk tribometer in air and seawater. The results showed that the multilayer coating consisted of three different layers, with Cr,Cr2N and CrN phases, respectively. Compared with CrN single layer coating, the adhesion of the multilayer coating was improved significantly, the hardness of the multilayer coating was(21±2) GPa. The corrosion resistance of the multilayer coating was also improved in artificial seawater. The friction coefficient of multilayer coating was lower than that of CrN single layer coating both in air and seawater.展开更多
A Ni-7Cr-4Al(mass fraction, %) nanocomposite was fabricated by co-electrodeposition of Ni with Cr(40 nm) and Al(100 nm) nanoparticles from a nickel sulfate bath, and its oxidation at 800 °C in air and hot c...A Ni-7Cr-4Al(mass fraction, %) nanocomposite was fabricated by co-electrodeposition of Ni with Cr(40 nm) and Al(100 nm) nanoparticles from a nickel sulfate bath, and its oxidation at 800 °C in air and hot corrosion under molten 75% Na2SO4 + 25% Na Cl salts(mass fraction) at 750 °C were investigated. For comparison, Ni-11 Cr nanocomposite and Ni-film were also investigated in order to elucidate the effect of Cr nanoparticles. The results indicate that Cr and Al nanoparticles are dispersed in the electrodeposited nanocrystalline Ni grains(in size range of 20-60 nm). Ni-7Cr-4Al nanocomposite exhibits a dramatically increased oxidation resistance compared with Ni-11 Cr nanocomposite and Ni-film due to the fast formation of alumina scale, which also improves its hot corrosion resistance under molten 75% Na2SO4 + 25% Na Cl salts.展开更多
The viscoplastic friction and nanostructure formation mechanism of laser-clad Co-based coating were studied by rotary friction between laser-clad Co-Cr-Ni-Mo coating and WC-Co rod.The friction coefficient,friction int...The viscoplastic friction and nanostructure formation mechanism of laser-clad Co-based coating were studied by rotary friction between laser-clad Co-Cr-Ni-Mo coating and WC-Co rod.The friction coefficient,friction interface temperature and axial displacement—time curves during rotary friction process were measured.The results showed that all the curves firstly experienced rising stage and then steady stage.The rising stage corresponded to sliding friction while the steady stage corresponded to viscoplastic friction.After viscoplastic friction processing,three typical zones of viscoplastic deformation zone,thermo-mechanically affected zone,and original laser-clad zone can be observed successively from the friction surface to the interior.The viscoplastic deformation significantly crushed the network M23C7 phase in original laser-clad zone and made it dispersively distributed with equiaxial shape and in nano-scale.The viscoplastic zone,in width of 37-131 μm,is mainly characterized by refined M23C7 and α-Co phase with grain size bellow 50 nm,and even a small quantity of amorphous.Thus,the hardness of viscoplastic zone about HV997 was improved compared with the hardness of original laser-clad zone about HV600.展开更多
The nanocrystalline Fe-Ni-Cr coatings were electrodeposited by using the pulse current technique.The SEM results showed that the coatings had a mixed morphology of small nodules and fine cauliflower structures at low ...The nanocrystalline Fe-Ni-Cr coatings were electrodeposited by using the pulse current technique.The SEM results showed that the coatings had a mixed morphology of small nodules and fine cauliflower structures at low current densities.Also,the Cr content was increased at expense of Fe and Ni contents at high current densities.XRD patterns confirmed that the pulse current density had a positive effect on the grain refinement.The results of vibrating sample magnetometer(VSM)measurements demonstrated that by increasing the current density,the saturation magnetization was decreased and the coercivity was increased due to the enhancement of Cr content and the reduction of the grain size.The friction coefficient and wear rate values were decreased by increasing the pulse current density.Also,both the adhesive and abrasive wear mechanisms were observed on the worn surfaces.The abrasive grooves and the amount of wear debris were decreased by increasing the pulse current density.展开更多
Cr-SiC nanocomposite coatings with various contents of SiC nanoparticles were prepared by electrodeposition in optimized Cr plating bath containing different concentrations of SiC nanoparticles. Direct current electro...Cr-SiC nanocomposite coatings with various contents of SiC nanoparticles were prepared by electrodeposition in optimized Cr plating bath containing different concentrations of SiC nanoparticles. Direct current electrocodeposition technique was used to deposit chromium layers with and without SiC nanoparticles on mild carbon steel. The effects of current density, stirring rate and concentration of nanoparticles in the plating bath were investigated. Scanning electron microscopy was used to study surface morphology. Energy dispersive analysis technique was used to verify the presence of SiC nanoparticles in the coated layers. The corrosion behaviors of coatings were investigated by potentiodynamic polarization and electrochemical impedance spectroscopy methods in 0.05 mol/L HCl, 1 mol/L NaOH and 3.5% NaCl (mass fraction), respectively. Microhardness measurements and pin-on- disc tribometer technique were used to investigate the wear behavior of the coatings.展开更多
基金Project(51475449)supported by the National Natural Science Foundation of China
文摘A Cr/Cr2N/CrN multilayer coating with a thickness of 24.4 μm was deposited by multi-arc ion plating. The coating was systematically characterized by field emission scanning electron microscopy(FESEM), X-ray photoelectron spectrometry(XPS), energy dispersive spectroscopy(EDS), X-ray diffraction(XRD) and transmission electron microscopy(TEM). Hardness and adhesion were tested by nanoindentation and scratch tester, respectively. The friction properties were investigated by a reciprocating UMT-3MT ball-on-disk tribometer in air and seawater. The results showed that the multilayer coating consisted of three different layers, with Cr,Cr2N and CrN phases, respectively. Compared with CrN single layer coating, the adhesion of the multilayer coating was improved significantly, the hardness of the multilayer coating was(21±2) GPa. The corrosion resistance of the multilayer coating was also improved in artificial seawater. The friction coefficient of multilayer coating was lower than that of CrN single layer coating both in air and seawater.
基金Project(11531319)supported by the Scientific Research Fund of Heilongjiang Provincial Education Department,China
文摘A Ni-7Cr-4Al(mass fraction, %) nanocomposite was fabricated by co-electrodeposition of Ni with Cr(40 nm) and Al(100 nm) nanoparticles from a nickel sulfate bath, and its oxidation at 800 °C in air and hot corrosion under molten 75% Na2SO4 + 25% Na Cl salts(mass fraction) at 750 °C were investigated. For comparison, Ni-11 Cr nanocomposite and Ni-film were also investigated in order to elucidate the effect of Cr nanoparticles. The results indicate that Cr and Al nanoparticles are dispersed in the electrodeposited nanocrystalline Ni grains(in size range of 20-60 nm). Ni-7Cr-4Al nanocomposite exhibits a dramatically increased oxidation resistance compared with Ni-11 Cr nanocomposite and Ni-film due to the fast formation of alumina scale, which also improves its hot corrosion resistance under molten 75% Na2SO4 + 25% Na Cl salts.
基金Project(51101126) supported by the National Natural Science Foundation of ChinaProjects(20110491684,2012T50817) supported by the China Postdoctoral Science FoundationProject(20110942K) supported by the Open Fund of State Key Laboratory of Powder Metallurgy,China
文摘The viscoplastic friction and nanostructure formation mechanism of laser-clad Co-based coating were studied by rotary friction between laser-clad Co-Cr-Ni-Mo coating and WC-Co rod.The friction coefficient,friction interface temperature and axial displacement—time curves during rotary friction process were measured.The results showed that all the curves firstly experienced rising stage and then steady stage.The rising stage corresponded to sliding friction while the steady stage corresponded to viscoplastic friction.After viscoplastic friction processing,three typical zones of viscoplastic deformation zone,thermo-mechanically affected zone,and original laser-clad zone can be observed successively from the friction surface to the interior.The viscoplastic deformation significantly crushed the network M23C7 phase in original laser-clad zone and made it dispersively distributed with equiaxial shape and in nano-scale.The viscoplastic zone,in width of 37-131 μm,is mainly characterized by refined M23C7 and α-Co phase with grain size bellow 50 nm,and even a small quantity of amorphous.Thus,the hardness of viscoplastic zone about HV997 was improved compared with the hardness of original laser-clad zone about HV600.
文摘The nanocrystalline Fe-Ni-Cr coatings were electrodeposited by using the pulse current technique.The SEM results showed that the coatings had a mixed morphology of small nodules and fine cauliflower structures at low current densities.Also,the Cr content was increased at expense of Fe and Ni contents at high current densities.XRD patterns confirmed that the pulse current density had a positive effect on the grain refinement.The results of vibrating sample magnetometer(VSM)measurements demonstrated that by increasing the current density,the saturation magnetization was decreased and the coercivity was increased due to the enhancement of Cr content and the reduction of the grain size.The friction coefficient and wear rate values were decreased by increasing the pulse current density.Also,both the adhesive and abrasive wear mechanisms were observed on the worn surfaces.The abrasive grooves and the amount of wear debris were decreased by increasing the pulse current density.
文摘Cr-SiC nanocomposite coatings with various contents of SiC nanoparticles were prepared by electrodeposition in optimized Cr plating bath containing different concentrations of SiC nanoparticles. Direct current electrocodeposition technique was used to deposit chromium layers with and without SiC nanoparticles on mild carbon steel. The effects of current density, stirring rate and concentration of nanoparticles in the plating bath were investigated. Scanning electron microscopy was used to study surface morphology. Energy dispersive analysis technique was used to verify the presence of SiC nanoparticles in the coated layers. The corrosion behaviors of coatings were investigated by potentiodynamic polarization and electrochemical impedance spectroscopy methods in 0.05 mol/L HCl, 1 mol/L NaOH and 3.5% NaCl (mass fraction), respectively. Microhardness measurements and pin-on- disc tribometer technique were used to investigate the wear behavior of the coatings.