The Cr doped into TiO2(110) surface has been studied systematically by using periodic DFT/B3LYP method with slab model. It is found that doping Cr into perfect TiO2 (110) surface can reduce the value of band-gap from ...The Cr doped into TiO2(110) surface has been studied systematically by using periodic DFT/B3LYP method with slab model. It is found that doping Cr into perfect TiO2 (110) surface can reduce the value of band-gap from 3.13 to 1.16 eV, and then photocatalysis reaction may be achieved in visual light area. The results are in good agreement with the experiments.展开更多
A series of Cr doped TiO2 films were prepared by micro arc oxidation (MAO) using an electrolyte of Na3PO4+K2Cr2O7. X-ray diffraction and scanning electron microscopy revealed that the films mainly consisted of anat...A series of Cr doped TiO2 films were prepared by micro arc oxidation (MAO) using an electrolyte of Na3PO4+K2Cr2O7. X-ray diffraction and scanning electron microscopy revealed that the films mainly consisted of anatase phase with a porous surface morphology. The films have an excellent photocatalytic effect for degradation of methylene blue and decomposition of water under visible light illumination. This arises from the formation of Cr3+/Cr4+ and oxygen vacancy energy levels owing to Cr doping. The former reduces the electron-hole recombination chance, while the latter generates a new gap between the conduction band (CB) and valence band (VB) of TiO2, which lowers the photo energy of the excited electron in the VB to the oxygen vacancy states. The mechanisms for film synthesis during the MAO process are also presented.展开更多
α-Fe2O3 nanoparticles doped with various molar fractions of Cr^3+ were synthesized by a forced hydrolysis route and were characterized by X-ray diffraction(XRD),scanning electronic microscopy(SEM),X-ray photoele...α-Fe2O3 nanoparticles doped with various molar fractions of Cr^3+ were synthesized by a forced hydrolysis route and were characterized by X-ray diffraction(XRD),scanning electronic microscopy(SEM),X-ray photoelectron spectroscopy(XPS) and inductive coupled plasma(ICP) techniques.The particles reserve shuttle-like shape in the presence of Cr^3+.The crystallite sizes of Fe2O3 become smaller with the increased Cr^3+ concentration in solution.The responses of Cr doped α-Fe2O3 sensors were studied towards reducing gases such as ethanol,methanol,acetone,gasoline and n-hexane.Gas sensors based on these materials have higher sensitivities and rapid response/recovery time to alcohol than to hydrocarbon.展开更多
In order to improve the cycle and rate performance of LiNi0.5Mn1.5O4, LiCr2 Ni0.5 Mn1.5 O (0≤Y≤0.15) particles were Y -Y -Y 4 synthesized by the sucrose-aided combustion method. The effects of Cr doping in LiNi0.5...In order to improve the cycle and rate performance of LiNi0.5Mn1.5O4, LiCr2 Ni0.5 Mn1.5 O (0≤Y≤0.15) particles were Y -Y -Y 4 synthesized by the sucrose-aided combustion method. The effects of Cr doping in LiNi0.5Mn1.5O4 on the structures and electrochemical properties were investigated. The samples were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), galvanostatic charge-discharge test and electrochemical impedance spectrum (EIS). The results indicate that the LiCr2 Ni0.5 Mn1.5 O possess a spinel structure and small particle size, and LiCr0.2Ni0.4Mn1.4O4exhibits Y -Y -Y 4 the best cyclic and rate performance. It can deliver discharge capacities of 143 and 104 mA·h/g at 1C and 10C, respectively, with good capacity retention of 96.5% at 1C after 50 cycles.展开更多
Na_(3)V_(2)(PO_(4))_(3)(NVP),as a great potential cathode candidate for Na-ion batteries(NIBs),has attracted enormous interest due to its three-dimensional(3D)large open framework for convenient Na+transport,yet its p...Na_(3)V_(2)(PO_(4))_(3)(NVP),as a great potential cathode candidate for Na-ion batteries(NIBs),has attracted enormous interest due to its three-dimensional(3D)large open framework for convenient Na+transport,yet its practical application is still limited by its inferior electron conductivity and sluggish Na+diffusion kinetics.Herein,the tiny Cr doped hierarchical NVP micro-flower cathodes(i.e.,Na_(3)V_(2-x)Crx(PO_(4))_(3)@C,x≤0.1),which are self-assembled with single-crystal nanoflake subunits in-situ coated with carbon nano-shell,are designed and fabricated via a scalable avenue.The optimized cathode,i.e.,Na_(3)V_(1.94)Cr_(0.06)(PO_(4))_(3)@C(NVCP-6),was endowed with more electro-active Na(2)sites and higher electronic/ionic conductivity for efficient sodium storage.Benefiting from these competitive merits,the NVCP-6,when evaluated as a cathode towards NIBs,exhibits an ultrahigh-rate capability of 99.8 mAh·g^(-1)at 200 C and superior stability of 82.2%over 7300 cycles at 50 C.Furthermore,the NVCP-6 based full NIBs display remarkable electrochemical properties in terms of both high-rate capacities and long-duration cycling properties at different temperatures(-20–50°C).The contribution,i.e.,the design of“four ounces can move a thousand pounds”,here will promote the practical industrial application of NVP towards advanced NIBs.展开更多
The properties of undoped, Cr-doped, and In-doped bulk ZnTe crystals grown by the TGSG method were compared. Cr/In-doping leads to a slight red-shift of the absorption edge. Cr-doping also creates two characteristic a...The properties of undoped, Cr-doped, and In-doped bulk ZnTe crystals grown by the TGSG method were compared. Cr/In-doping leads to a slight red-shift of the absorption edge. Cr-doping also creates two characteristic absorption bands, centered at about 1750 nm and beneath the fundamental absorption edge. However, the fundamental reflectance spectra are not sensitive to the dopants. The resistivity of undoped, Cr-doped, and In-doped ZnTe is about 102 Ω.cm, 10^3 Ω.cm, and 10^8 Ω-cm, respectively. Only In-doped ZnTe has an IR transmittance higher than 60% in the range of 500 to 4000 cm-1. However, the IR transmittance of Cr-doped ZnTe is very low and decreases greatly as the wavenumber increases, which is mainly attributed to the scattering effects caused by some defects generated by Cr-doping.展开更多
基金This work was supported by the State Key Laboratory of Structural Chemistry, the National Natural Science Foundation of China (20273013), and the Education Foundation of Fujian Province (JA03007)
文摘The Cr doped into TiO2(110) surface has been studied systematically by using periodic DFT/B3LYP method with slab model. It is found that doping Cr into perfect TiO2 (110) surface can reduce the value of band-gap from 3.13 to 1.16 eV, and then photocatalysis reaction may be achieved in visual light area. The results are in good agreement with the experiments.
文摘A series of Cr doped TiO2 films were prepared by micro arc oxidation (MAO) using an electrolyte of Na3PO4+K2Cr2O7. X-ray diffraction and scanning electron microscopy revealed that the films mainly consisted of anatase phase with a porous surface morphology. The films have an excellent photocatalytic effect for degradation of methylene blue and decomposition of water under visible light illumination. This arises from the formation of Cr3+/Cr4+ and oxygen vacancy energy levels owing to Cr doping. The former reduces the electron-hole recombination chance, while the latter generates a new gap between the conduction band (CB) and valence band (VB) of TiO2, which lowers the photo energy of the excited electron in the VB to the oxygen vacancy states. The mechanisms for film synthesis during the MAO process are also presented.
基金Supported by the National Natural Science Foundation of China(No.40772026)
文摘α-Fe2O3 nanoparticles doped with various molar fractions of Cr^3+ were synthesized by a forced hydrolysis route and were characterized by X-ray diffraction(XRD),scanning electronic microscopy(SEM),X-ray photoelectron spectroscopy(XPS) and inductive coupled plasma(ICP) techniques.The particles reserve shuttle-like shape in the presence of Cr^3+.The crystallite sizes of Fe2O3 become smaller with the increased Cr^3+ concentration in solution.The responses of Cr doped α-Fe2O3 sensors were studied towards reducing gases such as ethanol,methanol,acetone,gasoline and n-hexane.Gas sensors based on these materials have higher sensitivities and rapid response/recovery time to alcohol than to hydrocarbon.
基金Project(2007BA201055)supported by the National Science and Technology Support Program,China
文摘In order to improve the cycle and rate performance of LiNi0.5Mn1.5O4, LiCr2 Ni0.5 Mn1.5 O (0≤Y≤0.15) particles were Y -Y -Y 4 synthesized by the sucrose-aided combustion method. The effects of Cr doping in LiNi0.5Mn1.5O4 on the structures and electrochemical properties were investigated. The samples were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), galvanostatic charge-discharge test and electrochemical impedance spectrum (EIS). The results indicate that the LiCr2 Ni0.5 Mn1.5 O possess a spinel structure and small particle size, and LiCr0.2Ni0.4Mn1.4O4exhibits Y -Y -Y 4 the best cyclic and rate performance. It can deliver discharge capacities of 143 and 104 mA·h/g at 1C and 10C, respectively, with good capacity retention of 96.5% at 1C after 50 cycles.
基金supported by the National Natural Science Foundation of China(Nos.51904115,52072151,52171211,52271218,and U22A20145)Taishan Scholars(No.ts201712050)+1 种基金Jinan Independent Innovative Team(No.2020GXRC015)Major Program of Shandong Province Natural Science Foundation(No.ZR2021ZD05).
文摘Na_(3)V_(2)(PO_(4))_(3)(NVP),as a great potential cathode candidate for Na-ion batteries(NIBs),has attracted enormous interest due to its three-dimensional(3D)large open framework for convenient Na+transport,yet its practical application is still limited by its inferior electron conductivity and sluggish Na+diffusion kinetics.Herein,the tiny Cr doped hierarchical NVP micro-flower cathodes(i.e.,Na_(3)V_(2-x)Crx(PO_(4))_(3)@C,x≤0.1),which are self-assembled with single-crystal nanoflake subunits in-situ coated with carbon nano-shell,are designed and fabricated via a scalable avenue.The optimized cathode,i.e.,Na_(3)V_(1.94)Cr_(0.06)(PO_(4))_(3)@C(NVCP-6),was endowed with more electro-active Na(2)sites and higher electronic/ionic conductivity for efficient sodium storage.Benefiting from these competitive merits,the NVCP-6,when evaluated as a cathode towards NIBs,exhibits an ultrahigh-rate capability of 99.8 mAh·g^(-1)at 200 C and superior stability of 82.2%over 7300 cycles at 50 C.Furthermore,the NVCP-6 based full NIBs display remarkable electrochemical properties in terms of both high-rate capacities and long-duration cycling properties at different temperatures(-20–50°C).The contribution,i.e.,the design of“four ounces can move a thousand pounds”,here will promote the practical industrial application of NVP towards advanced NIBs.
基金Project supported by the National Basic Research Program of China(No.2011CB610406)the National Natural Science Foundation of China(No.51372205)+3 种基金the 111 Project of China(No.B08040)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20116102120014)the NWPU Foundation for Fundamental Researchthe Research Fund of the State Key Laboratory of Solidification Processing(NWPU)
文摘The properties of undoped, Cr-doped, and In-doped bulk ZnTe crystals grown by the TGSG method were compared. Cr/In-doping leads to a slight red-shift of the absorption edge. Cr-doping also creates two characteristic absorption bands, centered at about 1750 nm and beneath the fundamental absorption edge. However, the fundamental reflectance spectra are not sensitive to the dopants. The resistivity of undoped, Cr-doped, and In-doped ZnTe is about 102 Ω.cm, 10^3 Ω.cm, and 10^8 Ω-cm, respectively. Only In-doped ZnTe has an IR transmittance higher than 60% in the range of 500 to 4000 cm-1. However, the IR transmittance of Cr-doped ZnTe is very low and decreases greatly as the wavenumber increases, which is mainly attributed to the scattering effects caused by some defects generated by Cr-doping.