The CrN and Cr-Al-Si-N films were deposited on Si wafer and SUS 304 substrates by a hybrid coating system with high power impulse magnetron sputtering (HIPIMS) and a DC pulse sputtering using Cr and AlSi targets under...The CrN and Cr-Al-Si-N films were deposited on Si wafer and SUS 304 substrates by a hybrid coating system with high power impulse magnetron sputtering (HIPIMS) and a DC pulse sputtering using Cr and AlSi targets under N2/Ar atmosphere.By varying the sputtering current of the AlSi target in the range of 0-2.5 A,both the Al and Si contents in the films increased gradually from 0 to 19.1% and 11.1% (mole fraction),respectively.The influences of the AlSi cathode DC pulse current on the microstructure,phase constituents,mechanical properties,and oxidation behaviors of the Cr-Al-Si-N films were investigated systematically.The results indicate that the as-deposited Cr-Al-Si-N films possess the typical nanocomposite structure,namely the face centered cubic (Cr,Al)N nano-crystallites are embedded in the amorphous Si3N4 matrix.With increasing the Al and Si contents,the hardness of the film first increases from 20.8 GPa for the CrN film to the peak value of 29.4 GPa for the Cr0.23Al0.14Si0.07 N film,and then decreases gradually.In the meanwhile,the Cr0.23Al0.14Si0.07N film also possesses excellent high-temperature oxidation resistance that is much better than that of the CrN film at 900 or 1000 °C.展开更多
在密集小区的认知无线电非正交多址(cognitive radio non-orthogonal multiple access,CRNOMA)网络场景下,针对用户采取Underlay方式复用时信道频带利用率低的问题,提出了一种基于能效的组合用户动态功率分配算法.该算法在保证主用户服...在密集小区的认知无线电非正交多址(cognitive radio non-orthogonal multiple access,CRNOMA)网络场景下,针对用户采取Underlay方式复用时信道频带利用率低的问题,提出了一种基于能效的组合用户动态功率分配算法.该算法在保证主用户服务质量前提下,基于用户之间的干扰和信干噪比,优化了组合多用户的接入方案,使信道接入用户数量最大且提高了频带利用率.同时,根据增益排序下的功率差额配比改进了剩余功率再分配方案,使空闲功率重新利用更加合理和有效.仿真结果表明,本文算法可以有效实现接入用户数量最大化的同时提高了频谱利用率.展开更多
基金supported by a 2-Year Research Grant of Pusan National University,Korea
文摘The CrN and Cr-Al-Si-N films were deposited on Si wafer and SUS 304 substrates by a hybrid coating system with high power impulse magnetron sputtering (HIPIMS) and a DC pulse sputtering using Cr and AlSi targets under N2/Ar atmosphere.By varying the sputtering current of the AlSi target in the range of 0-2.5 A,both the Al and Si contents in the films increased gradually from 0 to 19.1% and 11.1% (mole fraction),respectively.The influences of the AlSi cathode DC pulse current on the microstructure,phase constituents,mechanical properties,and oxidation behaviors of the Cr-Al-Si-N films were investigated systematically.The results indicate that the as-deposited Cr-Al-Si-N films possess the typical nanocomposite structure,namely the face centered cubic (Cr,Al)N nano-crystallites are embedded in the amorphous Si3N4 matrix.With increasing the Al and Si contents,the hardness of the film first increases from 20.8 GPa for the CrN film to the peak value of 29.4 GPa for the Cr0.23Al0.14Si0.07 N film,and then decreases gradually.In the meanwhile,the Cr0.23Al0.14Si0.07N film also possesses excellent high-temperature oxidation resistance that is much better than that of the CrN film at 900 or 1000 °C.
文摘在密集小区的认知无线电非正交多址(cognitive radio non-orthogonal multiple access,CRNOMA)网络场景下,针对用户采取Underlay方式复用时信道频带利用率低的问题,提出了一种基于能效的组合用户动态功率分配算法.该算法在保证主用户服务质量前提下,基于用户之间的干扰和信干噪比,优化了组合多用户的接入方案,使信道接入用户数量最大且提高了频带利用率.同时,根据增益排序下的功率差额配比改进了剩余功率再分配方案,使空闲功率重新利用更加合理和有效.仿真结果表明,本文算法可以有效实现接入用户数量最大化的同时提高了频谱利用率.